TY - JOUR T1 - Search for heavy resonances decaying into \({WW}\) in the eνμν final state in \({pp}\) collisions at root s=13 TeV with the ATLAS detector JF - European Physical Journal C N2 - A search for neutral heavy resonances is performed in the WW -> e nu mu nu decay channel using pp collision data corresponding to an integrated luminosity of 36.1 fb(-1), collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. No evidence of such heavy resonances is found. In the search for production via the quark-antiquark annihilation or gluon-gluon fusion process, upper limits on sigma(X) x B(X -> WW) as a function of the resonance mass are obtained in the mass range between 200 GeV and up to 5 TeV for various benchmark models: a Higgs-like scalar in different width scenarios, a two-Higgs-doublet model, a heavy vector triplet model, and a warped extra dimensions model. In the vector-boson fusion process, constraints are also obtained on these resonances, as well as on a Higgs boson in the Georgi-Machacek model and a heavy tensor particle coupling only to gauge bosons. KW - Gluon Fusion KW - Higgs KW - Bosons KW - Mass Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225914 VL - 78 IS - 24 ER - TY - JOUR A1 - Aad, G. A1 - Abbott, B. A1 - Abdallah, J. A1 - Abdel Khalek, S. A1 - Abdelalim, A. A. T1 - Search for the Standard Model Higgs boson in the H→WW(⋆)→ℓνℓνH→WW(⋆)→ℓνℓν decay mode with 4.7 fb\(^{−1}\) of ATLAS data at \(\sqrt{s}\)=7 TeV JF - Physics Letters B N2 - A search for the Standard Model Higgs boson in the H→WW(⋆)→ℓνℓνH→WW(⋆)→ℓνℓν (ℓ=e,μℓ=e,μ) decay mode is presented. The search is performed using proton–proton collision data corresponding to an integrated luminosity of 4.7 fb\(^{−1}\) at a centre-of-mass energy of 7 TeV collected during 2011 with the ATLAS detector at the Large Hadron Collider. No significant excess of events over the expected background is observed. An upper bound is placed on the Higgs boson production cross section as a function of its mass. A Standard Model Higgs boson with mass in the range between 133 GeV and 261 GeV is excluded at 95% confidence level, while the expected exclusion range is from 127 GeV to 233 GeV. KW - ATLAS KW - LHC KW - Higgs KW - WW Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127307 VL - 761 IS - 1 ER - TY - THES A1 - Meyer, Jochen T1 - Muon performance aspects and measurement of the inclusive ZZ production cross section through the four lepton final state with the ATLAS experiment at the LHC T1 - Aspekte der Leistungsfähigkeit des Myonnachweises und Messung des inklusiven ZZ Wirkungsquerschnitts mittels des Vier-Lepton-Endzustands mit dem ATLAS Experiment am LHC N2 - The "Large Hadron Collider" (LHC) is currently the most powerful particle accelerator. It provides particle collisions at a center of mass energy in the Tera-electronvolt range, which had never been reached in a laboratory before. Thereby a new era in high energy particle physics has began. Now it is possible to test one of the most precise theories in physics, the Standard Model of particle physics, at these high energies. The purpose is particularly served by four large experiments installed at the LHC, namely "A Toroidal LHC ApparatuS" (ATLAS), the "Compact-Muon-Solenoid" (CMS), the "Large Hadron Collider beauty" (LHCb) and "A Large Ion Collider Experiment" (ALICE). Besides exploring the high energy behavior of the well-established portions of the Standard Model, one of the main objectives is to find the Higgs boson included in the model, but not discovered by any preceding effort. It is of tremendous importance since fermions and heavy electroweak gauge bosons acquire mass because of this boson. Although the success of the Standard Model in describing nature is already undisputed, there are some flaws due to observations inexplicable within this theory only. Therefore searches for physics beyond the Standard Model are promoted at the LHC experiments as well. In order to achieve the defined goals, crucial aspects are firstly precise measurements, to verify Standard Model predictions in detail, and secondly an evaluation of as much information as accessible by the detectors, to recognize new phenomena as soon as possible for subsequent optimizations. Both challenges are only possible with a superior understanding of the detectors. An inevitable contribution to attain this knowledge is a realistic simulation, partially requiring new implementation techniques to describe the very complex instrumentation. The research presented here is performed under the patronage of the ATLAS collaboration with a special focus on measurements done with muon spectrometer. Thus a first central issue is the performance of the spectrometer in terms of physics objects that are recognized by the device, the compatibility of data and the existing simulation as well as its improvement and finally the extension of the acceptance region. Once the excellent behavior and comprehension of the muon spectrometer is demonstrated, a second part addresses one physics use case of reconstructed muons. The electroweak force is part of the Standard Model and causes the interaction of heavy electroweak gauge bosons with fermions as well as their self-interaction. In proton-proton collisions such gauge bosons are produced. However, they decay immediately into a pair of fermions. In case of the Z boson, which is one of the gauge bosons, oppositely charged fermions of the same generation, including muons, emerge. The various decay modes are determined precisely at particle accelerators other than the LHC. However, the associated production of two Z bosons is measured less exactly at those facilities because of a very low cross section. The corresponding results acquired with the ATLAS experiment exceed all previous measurements in terms of statistics and accuracy. They are reported in this thesis as obtained from the observation of events with four charged leptons. The enhancement of the signal yield based on the extension of the muon spectrometer acceptance is especially emphasized as well as alternative methods to estimate background events. Furthermore, the impact on the probing of couplings of three Z bosons and intersection with the search for the Standard Model Higgs boson are pointed out. N2 - Der "Large Hadron Collider" (LHC) ist der leistungsfähigste Teilchenbeschleuniger unserer Tage. Der Ringbeschleuniger erzeugt Teilchenkollisionen bei einer nie zuvor in einem Labor erreichten Schwerpunktenergie im Bereich von Teraelektronenvolt. Damit hat eine neue Ära in der Hochenergie-Teilchenphysik begonnen, in der eine der präzisesten Theorien der Physik, das Standardmodell der Teilchenphysik, bei diesen hohen Energien überprüft werden kann. Diesem Zweck dienen insbesondere die vier großen Experimente, "A Toroidal LHC ApparatuS" (ATLAS), "Compact-Muon-Solenoid" (CMS), "Large Hadron Collider beauty" (LHCb) und "A Large Ion Collider Experiment" (ALICE), welche am LHC aufgebaut sind. Neben der Erkundung des Hochenergieverhaltens der etablierten Bestandteile des Standardmodells, ist es ein Hauptanliegen das in dem Modell enthaltene Higgs Boson zu finden, welches bei allen bisherigen Bemühungen nicht nachgewiesen werden konnte. Dem Boson kommt eine wichtige Rolle zu, denn es erlaubt eine Erklärung der Massen von Fermionen und von schweren, elektroschwachen Eichbosonen. Obgleich der Erfolg des Standardmodells in seiner Beschreibung der Natur unumstritten ist, gibt es Schwachpunkte aufgrund von Beobachtungen, die die Existenz bislang unentdeckter Teilchen und Wechselwirkungen andeuten. Aus diesem Grund werden zudem Suchen nach Physik jenseits des Standardmodells von den LHC Experimenten betrieben. Um die ausgewiesenen Ziele zu erreichen, sind wesentliche Aspekte zum einen Präzisionsmessungen, um die Vorhersagen des Standardmodells eingehend zu testen, und zum anderen eine Auswertung aller mit den Detektoren zugänglichen Informationen, um Phänomene neuer Physik früh zu erkennen und Analysen daraufhin zu optimieren. Beide Herausforderungen gehen einher mit einem ausgezeichneten Verständnis der Detektoren. Einen unumgänglichen Beitrag dieses Wissen zu erlangen leistet eine realitätsgetreue Simulation, die teilweise neuer Techniken der Implementierung bedarf, um die komplexen Messanlagen zu beschreiben. Die hier präsentierte Forschungsarbeit wurde im Rahmen der ATLAS Kollaboration durchgeführt, wobei ein besonderer Schwerpunkt auf Messungen des Myon-Spektrometers liegt. Daher ist ein erstes zentrales Thema die Leistungsfähigkeit des Spektrometers hinsichtlich der von ihm identifizierten physikalischen Objekte, die Verträglichkeit aufgenommener Daten mit der existierenden Simulation sowie deren Verbesserung und schließlich die Erweiterung des Akzeptanzbereichs. Nachdem das exzellente Verhalten und Verständnis des Myon-Spektrometers demonstriert ist, befasst sich ein zweiter Teil mit einem physikalischen Anwendungsbereich gefundener Myonen. Die elektroschwache Kraft ist Teil des Standardmodells und verursacht die Wechselwirkung der schweren, elektroschwachen Eichbosonen mit Fermionen sowie ihre Selbstwechselwirkung. In Proton-Proton Kollisionen werden solche Bosonen produziert, die jedoch sofort wieder in ein Fermionen-Paar zerfallen. Im Falle des Z Bosons, welches solch ein Eichboson ist, entstehen entgegengesetzt geladene oder neutrale Fermionen der selben Generation, darunter auch Myonen. Die verschiedenen Zerfallsmodi sind bereits an anderen Beschleunigern als dem LHC bestimmt worden. Die gleichzeitige Produktion zweier Z Bosonen wurde jedoch aufgrund des sehr kleinen Wirkungsquerschnittes weniger exakt an diesen Einrichtungen gemessen. Die entsprechenden, mit dem ATLAS Experiment gewonnenen Resultate, übersteigen alle vorherigen Messungen hinsichtlich ihrer Statistik und Genauigkeit. Wie sie aus beobachteten Ereignissen mit vier geladenen Leptonen gewonnen werden, ist in dieser Arbeit ausgeführt. Besonders betont wird die gesteigerte Signalaufnahme durch die Erweiterung des Akzeptanzbereichs des Myon-Spektrometers sowie alternative Methoden zur Abschätzung von Untergrundereignissen. Außerdem werden Auswirkungen auf die Erforschung von Kopplungen dreier Z Bosonen sowie Überschneidungen mit der Suche nach dem Higgs Boson des Standardmodells erläutert. KW - ATLAS KW - LHC KW - Myon KW - Standardmodell KW - Higgs KW - Myon KW - Z Boson KW - ATLAS KW - standard model KW - muon KW - Z boson KW - Higgs KW - inclusive cross section KW - Elementarteilchenphysik KW - Vektorboson KW - Wirkungsquerschnitt Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78793 ER - TY - THES A1 - Pahlen, Federico von der T1 - Polarization and Spin Effects in Production and Decay of Charginos and Neutralinos at a Muon Collider T1 - Polarisations- und Spineffekte in der Produktion und dem Zerfall von Charginos und Neutralinos am Myon-Beschleuniger N2 - The mechanism of spontaneous symmetry breaking is essential to provide masses to the W and Z gauge bosons and fermions of the SM. We hope to elucidate this mechanism at the next generation of colliders. While the SM has been tested with astonishing precision it is believed to be an effective theory of a more fundamental Great Unified Theory. SUSY is one of the most attractive extensions of the SM of particle physics. Therefore, the search for SUSY is a top priority at the next generation of colliders. Once Higgs bosons are discovered, a precise determination of their properties is necessary to differentiate between different models, in particular the MSSM. A muon collider, running at center of mass energies around the neutral Higgs boson resonances, would allow precise measurements of masses and widths, as well as the couplings to their decay products. In particular their couplings to supersymmetric particles are essential to probe SUSY. Therefore, we study the decays of the heavier CP-even and CP-odd Higgs bosons into lighter chargino or neutralino pairs. In this thesis we have analyzed the polarization effects of the beams and the charginos and neutralinos produced in mu+ mu- annihilation around the center of mass energies of the Higgs boson resonances H and A. For the production of equal charginos we have shown that the ratio of H-chargino and A-chargino couplings can be precisely determined independently of the chargino decay mechanism. This method avoids reference to other experiments and makes only a few model-dependent assumptions. Here we have analyzed the effect of the energy spread and of the error from the non-resonant channels, including an irreducible standard model background contribution. For small tan(beta) the process yields large cross sections of up to a pb. For the production of two different charginos we have shown that the H-A interference can be analyzed using asymmetries of the charge conjugated processes. The asymmetries depend on the muon longitudinal beam polarizations and vanish for unpolarized beams. For the chargino pair production with subsequent two-body decay of one of the charginos we have shown that charge and beam polarization asymmetries in the energy distributions of the decay particles are sensitive to the interference of scalar exchange channels with different CP quantum numbers. This process provides unique information on the interference of overlapping Higgs boson resonances. The effect is larger for regions of parameter space with intermediate values of tan(beta) and light sleptons or LSP neutralinos. For the chargino pair production with subsequent two-body decays of both charginos we have defined energy distribution and angular asymmetries in the final particles, in order to analyze the spin-spin correlations of the charginos. The transverse polarizations of the charginos are sensitive to the CP quantum number of the exchanged Higgs bosons and can thus be used to separate overlapping resonances, as well as to determine the CP quantum number of a single resonance. For equal charginos, these asymmetries are not sensitive to the interference of CP-even and CP-odd Higgs exchange channels. For the neutralino pair production in mu+ mu- annihilation we study similar processes as for chargino production. Line shape measurements of neutralino pair production allow to precisely determine the ratio of H-neutralino and A-neutralino couplings. Neutralino pair production with subsequent two-body decay of one of the neutralinos in the intermediate tan(beta) region is sensitive to the interference of H and A and may be measured with a large statistical significance. The Majorana nature of the neutralinos implies that the beam polarization asymmetries vanish for the remaining production channels. For neutralino pair production with subsequent two-body decays of both neutralinos we analyze similar observables as in chargino production. The main difference consists in the intrinsic relative CP quantum number of the neutralino pair, which depends on the chosen scenario. We have thus shown that the interaction of the Higgs bosons to the gaugino-higgsino sector can be probed at a muon collider in chargino and neutralino pair production, both analyzing the production line-shape around the resonances as well as studying the chargino and neutralino polarizations via their decays. N2 - Der Mechanismus der spontanen Symmetriebrechung ist notwendig, um den W-und Z-Eichbosonen sowie den Fermionen des Standardmodels Masse geben zu können. Wir hoffen, diesen Mechanismus in der nächsten Generation von Teilchenbeschleunigern nachweisen zu können. Obwohl die Vorhersagen des Standardmodels (SM) bisher mit sehr großer Präzision bestätigt werden konnten, glaubt man, dass es sich um einen effektiven Niederenergielimes einer fundamentaleren Großvereinheitlichten Theorie handelt. Supersymmetrie (SUSY) ist eine der attraktivsten Erweiterungen des Standardmodels der Teilchenphysik. Deswegen ist die Suche nach SUSY eine der Prioritäten der nächsten Generation von Beschleunigern. Werden Higgs-Bosonen entdeckt, ist eine präzise Bestimmung ihrer Eigenschaften nötig. Ein Myonenbeschleuniger mit einer Schwerpunktsenergie in der Nähe der Resonanzen der neutralen Higgs-Bosonen würde eine ideale ,,Higgs-Fabrik'' darstellen, die genaue Messungen der Massen und Breiten sowie der Kopplungen und Zerfallsprodukte der Higgsbosonen erlauben würde. Insbesondere deren Kopplungen an SUSY-Teilchen ist wichtig, um das in der Natur realisierte SUSY-Szenario zu ermitteln. Deswegen haben wir die Zerfälle der schwereren CP-geraden und CP-ungeraden Higgs-Bosonen in leichtere Chargino- oder Neutralino-Paare studiert. In dieser Arbeit wurden der Einfluss der Strahlpolarisation der Myonen sowie die Polarisation der Charginos bzw. Neutralinos erzeugt in Myon Annihilation untersucht. Für die Produktion gleicher Charginos wurde gezeigt, dass das Verhältnis der H-Chargino-und der A-Chargino Kopplungen unabhängig vom Chargino Zerfallsmechanismus mit hoher Präzision bestimmt werden kann. Diese Methode vermeidet Anleihen bei anderen Experimenten und macht nur wenige modelabhängige Annahmen. Hier wurde der Effekt der Energieverteilung der Myonenstrahlen und des Fehlers aus den nicht-resonanten Kanäle, mit Berücksichtigung des irreduziblen Standardmodel-Hintergrundbeitrags, untersucht. Für kleine Werte von tan(beta) werden bei diesem Prozess große Wirkungsquerschnitte von bis zu einem pb erzielt. Für die Produktion von zwei unterschiedlichen Charginos wurde gezeigt, dass die H-A-Interferenz mit der Asymmetrie der Wirkungsquerschnitte für ladungskonjugierten Prozesse analysiert werden kann. Diese Asymmetrie hängt von der longitudinalen Strahlpolarisation ab und verschwindet für unpolarisierten Myon-Strahlen. Für Chargino-Paarproduktion mit anschließendem Zweikörperzerfall eines der Charginos haben wir gezeigt, dass die Ladungs-und Polarisationsasymmetrien den Energieverteilungen der Zerfallsprodukte auf die Interferenz der skalaren Austausch-Kanäle mit unterschiedlichen CP-Quantenzahlen sensitiv sind. Dieser Prozess liefert eindeutige Informationen über die Interferenz überlappender Higgsboson-Austausch-Resonanzen. Der Effekt ist für Regionen des Parameterraums mit mittleren Werten von tan(beta) und für leichte Sleptonen oder LSP Neutralinos größer. Für Chargino-Paarproduktion mit anschließendem Zweikörperzerfall beider Charginos wurden Energie- und Winkelverteilungen der Zerfallsprodukte definiert, um damit die Chargino-Spin-Spin-Korrelationen analysieren zu können. Die transversalen Polarisationen der Charginos sind auf die CP-Quantenzahl des ausgetauschten Higgs-Bosons sensitiv. Dadurch kann man überlappende Resonanzen trennen, sowie auch die CP-Quantenzahl einer einzelnen Resonanz bestimmen. Für gleiche Charginos sind diese Asymmetrien auf die Interferenz CP-gerader und CP-ungerader Higgs-Kanäle nicht sensitiv. Es ist deswegen nicht möglich, mit ihrer Hilfe zwischen zwei überlappenden skalaren Resonanzen mit unterschiedlichen CP-Quantenzahlen und einer CP-verletzenden einzelnen Resonanz zu unterscheiden. Für Neutralino Paarproduktion in Myon Annihilation werden, analog zum Chargino Produktionsprozess, Lineshape sowie die anschließenden Zerfälle untersucht. Lineshape-Messungen der Neutralino-Paarproduktion erlauben eine präzise Bestimmung des Verhältnisses der H-Neutralino- und A-Neutralino-Kopplungen. Neutralino Paarproduktion mit anschließendem Zweikörperzerfall eines der Neutralinos für mittleren Werten von tan(beta) ist sensitiv auf Interferenz von H und A ist und kann möglicherweise mit ausreichender statistischer Signifikanz gemessen werden können. Für Neutralino-Paarproduktion mit anschließendem Zweikörperzerfall beider Neutralinos werden die analogen Observablen wie bei der Chargino Paarproduktion analysiert. Ein wesentlicher Unterschied besteht darin, dass die relative intrinsische CP-Quantenzahl des erzeugten Neutralinopaares vom Szenario abhängt. Es wurde somit gezeigt, dass die Wechselwirkung der Higgsbosonen an den Gaugino-Higgsino-Sektor an einem Myonbeschleuniger aus Analysen der Chargino bzw. Neutralino Paar-Produktions-Lineshape an den Resonanzen sowie auch aus der Strahlpolarisations-Abhängigkeit der anschließenden Zerfälle getestet werden können. KW - Neutralino KW - Paarerzeugung KW - Chargino KW - Zerfall KW - Supersymmetrie KW - Myon-Beschleuniger KW - Higgs KW - Supersymmetry KW - Muon Collider KW - Higgs Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18421 ER -