TY - JOUR A1 - Tumir, Lidija-Marija A1 - Pavlović Saftić, Dijana A1 - Crnolatac, Ivo A1 - Ban, Željka A1 - Maslać, Matea A1 - Griesbeck, Stefanie A1 - Marder, Todd B. A1 - Piantanida, Ivo T1 - The nature of the (oligo/hetero)arene linker connecting two triarylborane cations controls fluorimetric and circular dichroism sensing of various ds-DNAs and ds-RNAs JF - Molecules N2 - A series of tetracationic bis-triarylborane dyes, differing in the aromatic linker connecting two dicationic triarylborane moieties, showed very high submicromolar affinities toward ds-DNA and ds-RNA. The linker strongly influenced the emissive properties of triarylborane cations and controlled the fluorimetric response of dyes. The fluorene-analog shows the most selective fluorescence response between AT-DNA, GC-DNA, and AU-RNA, the pyrene-analog’s emission is non-selectively enhanced by all DNA/RNA, and the dithienyl-diketopyrrolopyrrole analog’s emission is strongly quenched upon DNA/RNA binding. The emission properties of the biphenyl-analog were not applicable, but the compound showed specific induced circular dichroism (ICD) signals only for AT-sequence-containing ds-DNAs, whereas the pyrene-analog ICD signals were specific for AT-DNA with respect to GC-DNA, and also recognized AU-RNA by giving a different ICD pattern from that observed upon interaction with AT-DNA. The fluorene- and dithienyl-diketopyrrolopyrrole analogs were ICD-signal silent. Thus, fine-tuning of the aromatic linker properties connecting two triarylborane dications can be used for the dual sensing (fluorimetric and CD) of various ds-DNA/RNA secondary structures, depending on the steric properties of the DNA/RNA grooves. KW - triarylborane KW - fluorescent probe KW - circular dichroism KW - DNA recognition KW - RNA recognition Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319322 SN - 1420-3049 VL - 28 IS - 11 ER - TY - JOUR A1 - Hess, Michael A1 - Stritzker, Jochen A1 - Härtl, Barbara A1 - Sturm, Julia A1 - Gentschev, Ivaylo A1 - Szalay, Aladar T1 - Bacterial glucuronidase as general marker for oncolytic virotherapy or other biological therapies N2 - Background: Oncolytic viral tumor therapy is an emerging field in the fight against cancer with rising numbers of clinical trials and the first clinically approved product (Adenovirus for the treatment of Head and Neck Cancer in China) in this field. Yet, until recently no general (bio)marker or reporter gene was described that could be used to evaluate successful tumor colonization and/or transgene expression in other biological therapies. Methods: Here, a bacterial glucuronidase (GusA) encoded by biological therapeutics (e.g. oncolytic viruses) was used as reporter system. Results: Using fluorogenic probes that were specifically activated by glucuronidase we could show 1) preferential activation in tumors, 2) rena l excretion of the activated fluorescent compounds and 3) reproducible detection of GusA in the serum of oncolytic vaccinia virus treated, tumor bearing mice in several tumor models. Time course studies revealed that reliable differentiation between tumor bearing and healthy mice can be done as early as 9 days post injection of the virus. Regarding the sensitivity of the newly developed assay system, we could show that a single infected tumor cell could be reliably detected in this assay. Conclusion: GusA therefore has the potential to be used as a general marker in the preclinical and clinical evaluation of (novel) biological therapies as well as being useful for the detection of rare cells such as circulating tumor cells KW - Virologie KW - beta-glucuronidase KW - oncolytic virus KW - cancer KW - reporter KW - fluorescent probe Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69163 ER -