TY - THES A1 - Li, Han T1 - Fabrication of Carbon Nanotube Thin Films by Evaporation-Induced Self-Assembly T1 - Herstellung dünner Kohlenstoffnanorohr-Filme mittels verdunstungsinduzierter Selbstanordnung N2 - In summary, we have prepared single-wall carbon nanotube (SWNT) thin films by the method of evaporation-induced self-assembly (EISA). Using the scalable two-plate or lens setups, sorts of different film types or patterns of SWNTs has been successfully fabricated directly from the evaporation of solvents and could be precisely controlled by the concentrations of SWNT in ambient conditions. The special geometry of meniscus as the capillary bridge has not only given rise to a much higher efficiency of fabrication than what previously reported but also allowed us to monitor the pinning and depinning process carefully and further investigate the mechanism underlying the formation of different film morphologies. In contrast with the conventional "stick-slip" model, we have provided the new dynamical pinning and zipping model for the contact line (CL) behavior. By analyzing the motion of CL and varying deposited patterns, the traditionally so-called "stick" state should be treated as a dynamical pinning process due to the interfacial tension contrast between SWNT-covered and bare silicon surface. Besides, the plausible one-step "slip" motion could be dominated by the zipping-like kink propagation. In addition, the experiments with heated substrates at higher temperatures between 30°C and 50 °C have shown that the striped pattern could be fabricated by both much lower SWNT and SDS concentrations than that in room temperature, which is consistent with our model of interfacial tension contrast. In this situation, the deposition rate was increased but the quality of SWNT alignment was undermined because the corresponding moving velocity of SWNT was also too fast for SWNTs to rotate when the evaporative rate was high. The similar results were identified by the SWNT/polymer conjugates dispersed in chloroform under the similar setups and other identical conditions. The typical breathing motion of dynamical pinning and zipping-like propagation for depinning were confirmed by the new suspensions despite that some morphological parameters changed dramatically compared with that from the aqueous solution. For example, the spacing between stripes reached 100 µm ~ 200 µm because the large contact angle contrast between HDMS- and SWNT-covered surface accompanies with the high evaporation rate of chloroform in the pinning and depinning process. Likewise the average CL velocity for fabrication reached around 20 µm/s due to the much higher evaporation rate of chloroform than water. Using alike suspensions, the modified EISA method called dose-controlled floating evaporative self-assembly (DFES) was employed to implement the self-assembly of SWNTs on the water/air interface and then deposit them on solid substrate by directed floating. Although the stripes were fabricated successfully by drops with certain doses and SWNT concentrations, there inevitably existed randomly oriented SWNTs from the water surface that built networks between the stripes containing well-aligned tubes. In order to slow down the evaporation rate and monitor the process detailedly, we used chlorobenzene as the solvent instead of chloroform and find the typical pinning/depinning movement of the CL. A preliminary analysis of the results in terms of chlorobenzene implied that the CL possibly followed the similar pinning/depinning process in consistence with our model with capillary bridge. In the last part of the thesis, the primary research on the optical properties of these stripes of ultrahigh purity semiconducting nanotubes was conducted by fluorescence microscopy and photoluminescence excitation (PLE) spectroscopy. The energy transfer of the photogenerated excitons was confirmed between different tube species with controlled band gaps. In short, the experiments performed in this thesis allowed to gain new insights about the fabrication of large-area SWNT thin films by the cost-effective solution-processed method and most importantly to uncover its intrinsic mechanism as well. Combined with the separation and selection technique like density gradient centrifugation or polyfluorene derivatives assisted method, highly monodisperse semiconducting nanotubes could be deposited into organized, controllable and functional arrays. Beyond the ambient conditions, precise control for the evaporation under preset temperature and vapor pressure could possibly extend the technique to the industry level. Assisted by some other mature techniques such as roll-to-roll printing, the cost-effective method could be widely used in the manufacture of various thin film devices. More complex 2D or even 3D structures could be designed and accomplished by the method for the functional or stretchable requirements. Further research on the fundamental exciton transition and diffusion in different networks or structures of SWNTs will be the significant precondition for the real applications. Looking ahead, from the individual carbon nanotube to its thin film, this promising material with outstanding properties had many challenges to overcome before the real-world applications. Thanks to the availability of pure and well-defined materials, the scalable solution-processed approaches for fabrication of thin films should be able to unlock the potential of carbon nanotubes and exploit them in (opto-)electronic devices in the foreseeing future. N2 - Im Rahmen der vorliegenden Arbeit wurden über die Methode der Verdunstungsinduzierten Selbstanordnung (evaporation-induced self-assembly, EISA) dünne Filme aus einwandigen Kohlenstoffnanoröhren (SWNTs) hergestellt. Die Verwendung eines individuell anpassbaren Zwei-Platten- oder Linsen-Aufbaus ermöglichte durch präzise Kontrolle der Konzentrationen der verwendeten SWNT-Suspensionen und der unterschiedlichen Reaktionsbedingungen die Herstellung verschiedenster Arten und Anordnungen von SWNT-Dünnfilmen. Durch Ausnützen der speziellen Geometrie des Meniskus einer Kapillarbrücke zwischen zwei Oberflächen konnte nicht nur eine effizientere Herstellung im Vergleich zu früheren Veröffentlichungen erzielt werden, sondern es konnte auch der Mechanismus der Selbstanordnung (Pinning und Depinning) in Abhängigkeit der Reaktionsbedingungen und die resultierende Dünnfilmmorphologie untersucht werden. Es konnte gezeigt werden, dass im Gegensatz zum gängigen "stick-slip" Modell durch ein dynamisches Reißverschluss-Modell (dynamical pinning and zipping model) das Verhalten an der Kontaktlinie (contact line, CL) besser beschrieben werden kann. Eine Analyse der CL-Bewegung unter unterschiedlichen Abscheidungsbedingungen führte zu dem Schluss, dass der bisher verwendete "Stick"-Zustand als dynamischer Pinning-Zustand betrachtet werden sollte, dessen Zustandekommen auf der unterschiedlichen Oberflächenspannung zwischen SWNT-bedeckten und -freien Bereichen auf der Abscheidungsoberfläche beruht. Beim bisher als einschrittige "Slip"-Bewegung beschriebenen Fortschreiten der CL ist dagegen eine Reißverschluss-ähnliche Knick-Bewegung vorherrschend. Weiterführende temperaturabhängige Abscheidungsstudien zur Dünnfilmpräparation konnten zeigen, dass Dünnfilme in Streifenanordnung bei wesentlich geringeren SWNT- und Seifenkonzentrationen im Vergleich zu Raumtemperatur hergestellt werden können. Auch diese Prozesse konnten durch das oben beschriebene Oberflächenspannungskontrastmodell erklärt werden. Die Abscheidungsrate nimmt mit höherer Temperatur zu, wobei die Ordnung der abgeschiedenen SWNTs im Dünnfilm abnimmt, da die Bewegungsgeschwindigkeit hin zur CL im Vergleich zur Rotationsgeschwindigkeit stark zunimmt. Auch für SWNT/Polymer Suspensionen in organischen Lösungsmitteln konnte das Verhalten der CL nach dem dynamischen Reißverschluss-Modell erklärt werden und gestreifte Dünnfilme hergestellt werden. Die Filmmorphologie und der Streifenabstand unterschieden sich jedoch maßgeblich von denen aus wässrigen SWNT Suspensionen hergestellten Dünnfilmen. Hierfür ist auch die mit 20 µm/s sehr hohe Herstellungsgeschwindigkeit verantwortlich. Unter Verwendung der organischen SWNT Suspensionen wurden auch Experimente zu einer von EISA entlehnten Abscheidungsmethode (dose-controlled floating evaporative self-assembly, DFES) durchgeführt. Hierbei wurden gestreifte SWNT Dünnfilme durch SWNT-Selbstanordnung schwimmend an der Flüssig/Luft-Grenzfläche und anschließender Abscheidung auf festem Substrat hergestellt. Auch hier konnte ein CL-verhalten, welches dem dynamischen Reißverschluss-Modell folgt nachgewiesen werden. Detailliertere Betrachtung des Zwischenstreifenraumes zeigte jedoch willkürlich angeordnete SWNTs unabhängig der Herstellungsparameter. Im letzten Teil der Dissertation wurden mittels Fluoreszenz-Anregungs-Spektroskopie und Fluoreszenzmikroskopie die optischen Eigenschaften der Streifen-Dünnfilme, bestehend aus hochaufgereinigten halbleitenden SWNTs untersucht. Bei Streifenmustern aus unterschiedlichen SWNT Spezies konnte ein Energietransfer der exzitonischen angeregten Zustände zwischen SWNTs mit unterschiedlicher Bandlücke nachgewiesen werden. Zusammengefasst lässt sich sagen, dass die im Rahmen dieser Dissertation durchgeführten Experimente ein tieferes Verständnis der Herstellung großflächiger SWNT Dünnfilme durch Entdeckung des zugrundeliegenden Mechanismus ermöglichten. In Kombination mit Auftrennungsverfahren wie Dichtegradientenultrazentrifugation oder Polymer-basierten Ansätzen können so monodisperse, halbleitende SWNTs kontrolliert zu geordneten, funktionellen Arrays angeordnet werden. Präzise Kontrolle der Umgebungsbedingungen, wie Temperatur oder Druck, könnten die Technik auch für industrielle Anwendung interessant machen. Unterstützt durch etablierte Methoden wie dem Rollendruck könnte die kostengünstige Methode großflächig zur Herstellung von verschiedenen Dünnfilmen zur Anwendung kommen. Komplexere, funktionelle, dehnbare 2D oder 3D Strukturen könnten so entworfen werden. Weitere Untersuchungen hinsichtlich der exzitonischen Übergänge und Exzitondiffusion in solchen SWNT-Netzwerken oder -Strukturen wären die Grundvoraussetzung für tatsächliche Anwendungsmöglichkeiten. Vorausschauend lässt sich sagen, dass auf dem Weg von der individuellen Nanoröhre hin zu SWNT Dünnfilmen noch zahlreiche Herausforderungen bestehen, bevor eine reale Anwendung dieser vielversprechenden Materialien möglich erscheint. Durch hochreines und wohldefiniertes Ausgangsmaterial könnte die frei skalierbare Herstellung von SWNT Dünnfilmen über die hier beschriebenen Methoden aber eine Anwendungsmöglichkeit für das lange prognostizierte Potential der Kohlenstoffnanoröhren in (opto-)elektronischen Vorrichtungen in näherer Zukunft ermöglichen. KW - Kohlenstoff-Nanoröhre KW - Carbon Nanotube KW - Evaporation-Induced Self-Assembly KW - thin film KW - verdunstungsinduzierter Selbstanordnung KW - dünner Filme KW - Dünne Schicht KW - Selbstorganisation KW - Verdunstung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123407 ER - TY - THES A1 - Paul, Markus Christian T1 - Molecular beam epitaxy and properties of magnetite thin films on semiconducting substrates T1 - Molekularstrahlepitaxie und Eigenschaften dünner Magnetitfilme auf Halbleitersubstraten N2 - The present thesis is concerned with molecular beam epitaxy of magnetite (Fe3O4) thin films on semiconducting substrates and the characterization of their structural, chemical, electronic, and magnetic properties. Magnetite films could successfully be grown on ZnO substrates with high structural quality and atomically abrupt interfaces. The films are structurally almost completely relaxed exhibiting nearly the same in-plane and out-of-plane lattice constants as in the bulk material. Films are phase-pure and show only small deviations from the ideal stoichiometry at the surface and in some cases at the interface. Growth proceeds via wetting layer plus island mode and results in a domain structure of the films. Upon coalescence of growing islands twin-boundaries (rotational twinning) and anti-phase boundaries are formed. The overall magnetization is nearly bulk-like, but shows a slower approach to saturation, which can be ascribed to the reduced magnetization at anti-phase boundaries. However, the surface magnetization which was probed by x-ray magnetic circular dichroism was significantly decreased and is ascribed to a magnetically inactive layer at the surface. Such a reduced surface magnetization was also observed for films grown on InAs and GaAs. Magnetite could also be grown with nearly ideal iron-oxygen stoichiometry on InAs substrates. However, interfacial reactions of InAs with oxygen occur and result in arsenic oxides and indium enrichment. The grown films are of polycrystalline nature. For the fabrication of Fe3O4/GaAs films, a postoxidation of epitaxial Fe films on GaAs was applied. Growth proceeds by a transformation of the topmost Fe layers into magnetite. Depending on specific growth conditions, an Fe layer of different thickness remains at the interface. The structural properties are improved in comparison with films on InAs, and the resulting films are well oriented along [001] in growth direction. The magnetic properties are influenced by the presence of the Fe interface layer as well. The saturation magnetization is increased and the approach to saturation is faster than for films on the other substrates. We argue that this is connected to a decreased density of anti-phase boundaries because of the special growth method. Interface phases, viz. arsenic and gallium oxides, are quantified and different growth conditions are compared with respect to the interface composition. N2 - Die vorliegende Arbeit beschäftigt sich mit der Molekularstrahlepitaxie von dünnen Magnetitfilmen (Fe3O4) auf Halbleitersubstraten und der Charakterisierung ihrer strukturellen, chemischen, elektronischen und magnetischen Eigenschaften. Magnetitfilme konnten auf ZnO Substraten mit hoher struktureller Qualität und scharfen Grenzflächen durch Kodeposition von Eisen und Sauerstoff gewachsen werden. Die Filme sind strukturell nahezu vollständig relaxiert und weisen innerhalb und außerhalb der Wachstumsebene annähernd die Gitterkonstante von Einkristallen auf. Weiterhin sind die hergestellten Proben phasenrein und zeigen nur an der Oberfläche und in einigen Fällen an der Grenzfläche allenfalls kleine Abweichungen von der idealen Stöchiometrie. Das Wachstum erfolgt im Stranski-Krastanov-Modus und resultiert in einer Domänenstruktur der Filme. Beim Zusammenwachsen der Inseln entstehen Antiphasengrenzen und Zwillingsgrenzen. Die Volumenmagnetisierung der Filme ist annähernd gleich der eines Einkristalls, jedoch ist das Einmündungsverhalten in die Sättigung aufgrund von reduzierter Magnetisierung an Antiphasengrenzen deutlich langsamer. Dagegen ist die Oberflächenmagnetisierung, welche mit der Methode des Röntgenzirkulardichroismus untersucht wurde, erheblich reduziert, was auf eine magnetisch inaktive Schicht an der Oberfläche schließen lässt. Diese Reduzierung der Oberflächenmagnetisierung wurde auch für Filme, die auf InAs oder GaAs deponiert wurden, beobachtet. Ebenfalls konnte Magnetit mit nahezu idealem Eisen-Sauerstoff-Verhältnis auf InAs gewachsen werden. Bei diesem Substrat treten jedoch Grenzflächenreaktionen des Indiumarsenids mit Sauerstoff auf, die eine Arsenoxidphase und eine Indiumanreicherung bewirken. Die Filme wachsen hier nur polykristallin. Für die Herstellung von Fe3O4/GaAs-Filmen wurde die Methode der Nachoxidation von epitaktischen Eisenfilmen benutzt. Das Wachstum läuft dabei durch Transformation der obersten Lagen des Eisenfilms zu Magnetit ab. Abhängig von den genauen angewandten Wachstumsbedingungen bleibt dabei eine Eisenschicht unterschiedlicher Dicke an der Grenzfläche übrig. Die strukturellen Eigenschaften sind im Vergleich zu Filmen auf InAs verbessert und die Proben sind gut entlang der [001]-Richtung orientiert. Die magnetischen Eigenschaften werden ebenfalls durch die Eisen-Grenzflächenschicht beeinflusst. Die Sättigungsmagnetisierung ist erhöht und tritt bei niedrigeren Magnetfeldern auf. Dieses Verhalten ist offenbar mit einer geringeren Dichte an Antiphasengrenzen aufgrund des andersartigen Wachstumsmechanismus verknüpft. Auftretende Grenzflächenphasen wurden quantifiziert und unterschiedliche Wachstumsbedingungen im Hinblick auf die Grenzflächenzusammensetzung verglichen. KW - Molekularstrahlepitaxie KW - Dünne Schicht KW - Magnetit KW - Physikalische Eigenschaft KW - Halbleitersubstrat KW - Photoelektronenspektroskopie KW - Röntgenabsorption KW - Röntgenbeugung KW - Elektronenbeugung KW - molecular beam epitaxy KW - photoelectron spectroscopy KW - x-ray magnetic circular dichroism KW - magnetic oxide KW - thin film Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56044 ER - TY - THES A1 - Bockmeyer, Matthias T1 - Structure and Densification of Thin Films Prepared From Soluble Precursor Powders by Sol-Gel Processing T1 - Struktur und Verdichtung von dünnen Schichten hergestellt über das Sol-Gel Verfahren unter Verwendung löslicher Vorstufenpulver N2 - The main focus of this work was to get a deeper understanding of the relationship between the structure of sol-gel films, their densification and their macroscopic cracking. First of all titania was chosen as model system. Therefore a synthesis route starting from the preparation of long-term stable amorphous redissoluble precursor powders based on acetylacetone as chelate ligand was utilized. The solubility and stability of the powders in various solvents can be determined by chemical synthesis and technological parameters. When dissolved in a solvent mixture of ethanol and 1,5-pentanediol, thin films can be easily prepared by dip-coating technique. Thereby the quality of the titania films enormously depends on the calcinations temperature and the solvent mixture is used. In order to investigate the influence of different solvents and solvent mixtures on the microstructure and densification of the precursors, the coating solutions were stripped off (sol powder) and analyzed as function of annealing temperature. It was pointed out that a high densification rate caused by the addition of 1,5-pentanediol, results in dense microstructure with trapped residual carbon. These impurities can retard the phase transformation of anatase to rutile. The analysis of so-called “film powders” scraped off multiple dip-coated substrates provides valuable information on the effect of air moisture and unidirectional densification during drying and aging on the structure of thin films. The high surface-to-volume ratio and access to air moisture determine the chemical composition of the as-prepared film, which controls shrinkage, crystallization and defect structure of the coatings. Further it was shown, that drying as a thin film results in the formation of closed pores and much denser microstructure than the respective sol powder. Without the addition of 1,5-pentanediol all –OEt moieties undergo hydrolysis reactions, which causes the formation of a rigid network. The presence of 1,5-pentanediol retards this hydrolysis reactions and provides some network plasticity. Generally the microstructure of thin films is comparatively close to the microstructure of the film powders. The addition of 1,5-pentandiol prevents hydrolysis and condensation reactions as like in the film powders. However even at 700 °C, thin films never transform to rutile, which was attributed to the tensile stresses in thin films. In thin films and in film powders as well a comparable amount of closed pores are formed during annealing. Further it was shown that most of the thin sol-gel films investigated form a dense crust on their tops during annealing. This explains why crack free films exhibit only closed pores. However, when cracks appear during thin film shrinkage in the coating, this crust is burst, which generates open porosity. The defect density in the coatings was determined by an automated analysis of surface images. The crack formation and quantity can be directly referred to tensile stresses in the coatings, which arise from hydrolysis and condensation during thin film drying and aging. Therefore when 1,5-pentanediol is added to the sol, thin film cracking was avoided, because hydrolysis and condensation reactions are retarded, which preserves a higher network flexibility. Furthermore the crack formation was significantly influenced by the atmospheric humidity that was used during the coating process, which was explained by different drying and condensation rates. Under certain chemical starting conditions water soluble precursor powders can be also obtained. In general the observations made with the water based coating solutions are mostly in agreement with the former results based on ethanol based coating solutions. For example the high surface-to-volume ratio of film powders compared to sol powders also significantly enhances film drying and densification. The addition of 1,5-pentanediol also clearly contributes to their densification behavior and phase evolution. As seen before in the case of ethanol based coatings, 1,5-pentanediol enhances the stability towards hydrolysis and condensation reactions and preserves some network plasticity. Therefore coatings prepared without the addition of 1,5-pentanediol already form cracks during film drying and aging because of tensile stresses. Thus, the addition of 1,5-pentanediol results in a reduction/prevention of crack formation. Nevertheless some differences were observed, i.e. the critical single coating film thickness of ethanol based coatings is nearly twice that of water based coatings. This was explained by the different surface tensions of the basis solvents, which during thin film drying causes significantly higher capillary forces and tensile stresses in water based coatings. When acetylacetone is replaced by triethanolamine as chelating ligand for titanium also re-dissolvable precursor powders can be synthesized. The film powders combine a high hydrolytic stability of the precursor with sufficient intermediate network flexibility. The different type of organics changes the drying and densification behavior: i.e. in contrast to film powders obtained from acetylacetone based precursor powders the structure of triethanolamine based film powders is unaffected by the thin film drying process. This high hydrolytic stability and plasticity of this precursor allows the preparation of defect free coatings up to single film thickness of 300 nm. However triethanolamine based thin films present at intermediary annealing temperatures a distinctively different microstructure compared to acetylacetone based films. The general validity of the conclusions was proved on the basis of zirconia coatings that were also prepared by the use of re-dissolvable precursor powders. In principle all conclusions concerning the interconnection of precursor chemistry, film formation, densification and structure were transferable to the respective zirconia coatings. Differences mainly arise only from differential material properties i.e. bulk density. Finally, it has been pointed out that the findings obtained on the densification behavior of thinsol-gel films are also a valuable tool for improved explanations of other important scientific questions concerning sol-gel films, i.e. scratch resistance of sol-gel coatings, fiber -bridging and – degradation of sol-gel coated fibers. N2 - Grundsätzlich war es Ziel der vorliegenden Arbeit, die Zusammenhänge zwischen Struktur von Sol-Gel Schichten, ihrer Verdichtung und der Entstehung von makroskopischen Rissen besser verstehen zu können. Als Modelsystem wurde hierfür Titanoxid ausgewählt. Hierzu wurde von einer Syntheseroute basierend auf der Verwendung von langzeitstabilen amorphenre-dispergierbaren Vorstufenpulvern mit Acetylaceton als Chelatligand ausgegangen. Die Löslichkeit und Stabilität der Pulver in verschiedenen Lösungsmitteln lässt sich über die chemische Synthese bzw. technologischen Parameter einstellen. Wenn die Pulver in einem Lösungsmittelgemisch aus Ethanol und 1,5-Pentandiol gelöst werden, lassen sich mittels Tauchbeschichtungsverfahren einfach dünne Schichten herstellen. Die Qualität der Titanoxidschichten hängt dabei entscheidend von der verwendeten Pyrolysetemperatur und der Menge an verwendetem 1,5- Pentandiol ab. Um den Einfluss von verschiedenen Lösungsmitteln und Lösungsmittelgemischen auf die Mikrostruktur und Verdichtung der Vorstufen zu untersuchen, wurden die Sole am Rotationsverdampfer eingeengt (Sol-Pulver) und in Abhängigkeit von der Behandlungstemperatur analysiert. Dabei stellte sich heraus, dass eine hohe Verdichtungsrate verursacht durch den Zusatz von 1,5-Pentandiol, in einer dichten Mikrostruktur mit eingeschlossenem Rest-Kohlenstoff resultiert. Diese Kohlenstoff-Rückstände können die Phasenumwandlung von Anatas zu Rutil hemmen. Die Analyse der so genannten „Film-Pulver“, welche von mehrfach tauchbeschichteten Substraten abgekratzt worden sind, ermöglicht den Zugang zu entscheidenden Informationen über den Einfluss der Luftfeuchtigkeit und der unidirektionalen Verdichtung, während der Film-Trocknung und –Alterung, auf die Struktur der dünnen Schichten. Es zeigte sich, dass das große Oberfläche zu Volumen Verhältnis und der Kontakt mit Luftfeuchtigkeit die chemische Zusammensetzung der frisch hergestellten Schichten bestimmen. Diese wiederum steuert die Schichtschrumpfung, Kristallisation und Defektstruktur der Schichten. Ferner konnte dargestellt werden, dass die Trocknung als dünner Film zu der Entstehung von geschlossenen Poren und zu einer deutlich dichteren Mikrostruktur als die der entsprechenden Sol-Pulver führt. Ohne den Zusatz an 1,5-Pentandiol kommt es zur Hydrolyse der –OEt Gruppen, was die Bildung eines rigiden Netzwerks bewirkt. 1,5-Pentandiol als Zusatz hemmt diese Hydrolysereaktionen und bedingt damit eine gewisse Plastizität des Netzwerkes. Im Großen und Ganzen ist die Mikrostruktur der dünnen Schichten mit der Struktur der Film-Pulver gut vergleichbar. Durch den Zusatz an 1,5-Pentandiol werden in den Schichten die Hydrolyse und Kondensationsreaktionen ebenso gehemmt wie in den entsprechenden Film-Pulvern. Allerdings bei den dünnen Schichten ist auch bei 700 °C keine Phasenumwandlung zu beobachten, was auf Zugspannung in den dünnen Filmen zurückzuführen ist. Während der Calcinierung kommt es sowohl in dünne Schichten wie als auch in den Film-Pulvern zur Ausbildung von geschlossenen Poren. Ferner wurde gezeigt, dass die meisten untersuchten dünnen Schichten während der Pyrolyse auf ihrer Oberfläche eine dichte Kruste ausbilden. Dies erklärt warum rissfreie Schichten nur geschlossene Poren aufweisen. Allerdings wenn Risse während der Schichtschrumpfung in der Schicht auftreten, wird diese Kruste durchbrochen, was zur Bildung von offener Porosität führt. Die Defektdichte in den Schichten wurde mittels einer automatisierten Bildanalyse der Oberfläche bestimmt. Die Riss-Bildung und Riss-Häufigkeit kann dabei direkt mit der Entstehung von Zugspannung, durch Hydrolyse und Kondensation während der Schicht-Trocknung und –Alterung, in Zusammenhang gebracht werden. Durch die Zugabe von 1,5-Pentandiol konnte die Rissentstehung verhindert werden, da Hydrolyse und Kondensations-Reaktionen gehemmt werden, was eine höhere Flexibilität des Netzwerkes erhält. Weiterhin wurde die Rissentstehung signifikant durch die herrschende Luftfeuchtigkeit während es Beschichtungsprozesses beeinflusst, was mit unterschiedlichen Hydrolyse- und Kondensations-Raten zu erklären ist. Unter Verwendung bestimmter chemische Syntheseparameter, können ebenso wasserlösliche Vorstufenpulver erhalten werden. Grundsätzlich sind die Untersuchungen an den hieraus resultierenden wässrigen Solen und Schichten in guter Übereinstimmung mit den vorherigen Untersuchungen an ethanolischen Beschichtungssystemen. So zum Beispiel, beschleunigt ebenso das große Oberfläche zu Volumen Verhältnis der Film-Pulver deutlich die Film-Trocknung und –Verdichtung, im Vergleich zu den Sol-Pulvern. Auch beeinflusst ein Zusatz an 1,5-Pentandiol eindeutig das Verdichtungsverhalten und die Phasenentwicklung. Wie schon bereits im Fall der Ethanol basierenden Beschichtungen festgestellt worden ist, erhöht 1,5-Pentandiol die Beständigkeit hinsichtlich Hydrolyse und Kondensationsreaktionen und erhält hiermit eine gewisse Netzwerkplastizität. Deshalb bilden Filme die ohne einen Zusatz an 1,5-Pentandiol hergestellt worden sind, aufgrund von Zugspannung, schon während der Film-Trocknung und -Alterung Risse aus. Durch einen Zusatz von 1,5-Pentandiol kann dagegen die Entstehung von Rissen vermindert bzw. vermieden werden. Allerdings zeigten sich auch einige Unterschiede: So ist zum Beispiel die erreichbare Einzelschichtdicke der ethanolischen Beschichtungssystemen nahezu doppelt so groß wie die der wässrigen Beschichtungssysteme. Dies wurde mit der unterschiedlichen Oberflächenspannung des Basislösungsmittels erklärt, welche während der Schichttrocknung deutlich höhere Kapillarkräfte und Zugspannung in wässrigen Filmen erzeugt. Wird Acetylaceton gegen Triethanolamin als Chelatligand für Titan ausgetauscht, so können ebenso re-dispergierbare Vorstufenpulver hergestellt werden. Die Film-Pulver kombinieren hohe hydrolytische Stabilität der Vorstufe mit einer ausreichenden intermediären Netzwerkflexibilität. Der andere Komplexbildner verändert entscheidend das Trocknungs- und Verdichtungs-Verhalten: so z.B. wird die die Struktur von Film-Pulvern basierend auf Triethanolamin nicht entscheidend durch die Trocknung als dünne Schicht beeinflusst, im Gegensatz zu Film-Pulvern hergestellt von Vorstufenpulvern mit Acetylacetone als Chelatligand. Diese hohe hydrolytische Stabilität und Plastizität der Vorstufe ermöglicht die Herstellung von defektfreien Beschichtungen bis hin zu einer Einzelschichtdicke von 300 nm. Dennoch unterscheidet sich bei intermediären Pyrolysetemperaturen die Mikrostruktur der Triethanolamin basierenden Schichten deutlich von der auf Acetylaceton basierenden Schichtsystemen. Die Allgemeingültigkeit der Schlussfolgerungen wurde anhand Zirkonoxidbeschichtungen, welche ebenfalls unter Verwendung von löslichen Vorstufenpulvern hergestellt worden sind, überprüft. Grundsätzlich zeigte sich hierbei, dass alle Schlüsse hinsichtlich der Zusammenhänge der Vorstufenchemie, Film-Bildung, -Verdichtung und –Struktur auf die entsprechenden Zirkonoxidbeschichtungen übertragbar sind. Unterschiede ergeben sich nur aus unterschiedlichen Materialeigenschaften wie z.B. der makroskopischen Dichte. Letztlich wurde dargestellt, dass die Erkenntnisse hinsichtlich des Verdichtungsverhalten der Sol-Gel Schichten die Grundlage für die Aufklärung vieler anderer wichtiger wissenschaftlich Fragestellungen hinsichtlich Sol-Gel Beschichtungen bilden, wie z.B. der Kratzfestigkeit von Sol-Gel Schichten, Faser-Verbrückung und -Schädigung von Sol-Gel beschichten Fasern. KW - Sol-Gel-Verfahren KW - Dünne Schicht KW - Titan KW - Titandioxid KW - Dünnfilm KW - thin film KW - sol-gel KW - titania Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24577 ER -