TY - THES A1 - Mohammadi, Milad T1 - Role of oxidized phospholipids in inflammatory pain T1 - Rolle von oxidierten Phospholipiden bei entzündlichen Schmerzen N2 - Introduction: During inflammation, reactive oxygen species (ROS) such as Hydrogen peroxide accumulate at the inflammation site and by oxidizing lipids, they produce metabolites such as 4-hydroxynonenal (4-HNE) and oxidized phospholipids (OxPLs). Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are ligand gated ion channels that are expressed on nociceptors and their activation elicits pain. Hydrogen peroxide and 4-HNE are endogenous ligands for TRPA1 and their role in inflammatory pain conditions has been shown. OxPLs play a major pro-inflammatory role in many pathologies including atherosclerosis and multiple sclerosis. E06/T15 is a mouse IgM mAb that specifically binds oxidized phosphatidylcholine. D-4F is an apolipoprotein A-I mimetic peptide with a very high affinity for OxPLs and possess anti-inflammatory properties. E06 mAb and D-4F peptide protect against OxPLs-induced damage in atherosclerosis in vivo. Methods: To investigate the role of ROS and their metabolites in inflammatory pain, I utilized a combination of diverse and complex behavioral pain measurements and binding assays. I examined E06 mAb and D-4F as local treatment options for hypersensitivity evoked by endogenous and exogenous activators of TRPA1 and TRPV1 as well as in inflammatory and OxPL-induced pain models in vivo. 4-HNE, hydrogen peroxide as ROS source and mustard oil (AITC) were used to activate TRPA1, while capsaicin was used to activate TRPV1. Results: Intraplantar injection of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) into rats’ hind paw elicited thermal and mechanical hypersensitivity. Genetic and pharmacological evidence in vivo confirmed the role of TRPA1 in OxPLs-induced hypersensitivity. OxPLs formation increased in complete Freund’s adjuvant (CFA)-induced inflamed rats’ paw. E06 mAb and D-4F prevented OxPAPC–induced mechanical and thermal hypersensitivity (hyperalgesia) as well as CFA-induced mechanical hypersensitivity. Also, all irritants induced thermal and mechanical hypersensitivity as well as affective-emotional responses and spontaneous nocifensive behaviors. E06 mAb blocked prolonged mechanical hypersensitivity by all but hydrogen peroxide. In parallel, D-4F prevented mechanical hypersensitivity induced by all irritants as well as thermal hypersensitivity induced by capsaicin and 4-HNE. In addition, competitive binding assays showed that all TRPA1/V1 agonists induced prolonged formation of OxPLs in the paw tissue explaining the anti-nociceptive properties of E06 mAb and D-4F. Finally, the potential of gait analysis as a readout for non-provoked pain behavioral measurements were examined. Conclusion and implications: OxPLs were characterized as novel targets in inflammatory pain. Treatment with the monoclonal antibody E06 or apolipoprotein A-I mimetic peptide D-4F are suggested as potential inflammatory pain medications. OxPLs’ role in neuropathic pain is yet to be investigated. N2 - Im entzündeten Gewebe akkumulieren reaktive Sauerstoffspezies (ROS) sowie oxidierte Phospholipide (OxPLs). ROS und in der Reaktionskette nachgeschaltete Verbindungen, wie 4- Hydroxynonenal (4-HNE) aktivieren Transiente Rezeptor Potential (TRP) Ionenkanäle: Ankyrin 1 (TRPA1) und Vanilloid 1 (TRPV1). Diese TRP-Kanäle werden auf Nozizeptoren exprimiert und rufen Schmerz z.B. bei Entzündung hervor. OxPLs sind an vielen entzündungsfördernden Prozessen maßgebend beteiligt und spielen eine Schlüsselrolle bei Pathologie von Atherosklerose und Multipler Sklerose. E06/T15 ist ein Maus IgM-mAb, welcher spezifisch an oxidierte Phosphatidylcholine bindet. D-4F ist ein Apolipoprotein A-I (ApoA-I) mimetisches Peptid, das eine sehr hohe Affinität für OxPLs aufweist und auch entzündungshemmende Eigenschaften besitzt. E06 mAb und D-4F schützen vor Atherosklerose in vivo. Um die mögliche Rolle von OxPLs beim Entzündungsschmerz zu untersuchen, verwendete ich eine Kombination von verschiedenen und komplexen Schmerzverhaltensmessungen, Bindungsassays und immunhistologische Färbungen. ... KW - Inflammatory pain KW - Oxidized phospholipids KW - reactive oxygen species KW - ROS KW - 4-HNE KW - HNE KW - OxPL Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192402 ER - TY - JOUR A1 - Plauth, Annabell A1 - Geikowski, Anne A1 - Cichon, Susanne A1 - Wowro, Sylvia J. A1 - Liedgens, Linda A1 - Rousseau, Morten A1 - Weidner, Christopher A1 - Fuhr, Luise A1 - Kliem, Magdalena A1 - Jenkins, Gail A1 - Lotito, Silvina A1 - Wainwright, Linda J. A1 - Sauer, Sascha T1 - Hormetic shifting of redox environment by pro-oxidative resveratrol protects cells against stress JF - Free Radical Biology and Medicine N2 - Resveratrol has gained tremendous interest owing to multiple reported health-beneficial effects. However, the underlying key mechanism of action of this natural product remained largely controversial. Here, we demonstrate that under physiologically relevant conditions major biological effects of resveratrol can be attributed to its generation of oxidation products such as reactive oxygen species (ROS). At low nontoxic concentrations (in general < 50 mu M), treatment with resveratrol increased viability in a set of representative cell models, whereas application of quenchers of ROS completely truncated these beneficial effects. Notably, resveratrol treatment led to mild, Nrf2-specific gene expression reprogramming. For example, in primary epidermal keratinocytes derived from human skin this coordinated process resulted in a 1.3-fold increase of endogenously generated glutathione (GSH) and subsequently in a quantitative reduction of the cellular redox environment by 2.61 mV mmol GSH per g protein. After induction of oxidative stress by using 0.78% (v/v) ethanol, endogenous generation of ROS was consequently reduced by 24% in resveratrol pre-treated cells. In contrast to the common perception that resveratrol acts mainly as a chemical antioxidant or as a target protein-specific ligand, we propose that the cellular response to resveratrol treatment is essentially based on oxidative triggering. In physiological microenvironments this molecular training can lead to hormetic shifting of cellular defense towards a more reductive state to improve physiological resilience to oxidative stress. KW - Trans-reservatrol KW - Hydrogen-peroxide KW - In-vitro KW - Hormesis KW - Ethanol KW - Oxygen KW - Nrf2 KW - Glutathione KW - Metabolism KW - Polyphenols KW - ROS KW - Oxidative stress KW - Redox environment KW - Skin KW - Epidermis Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187186 VL - 99 ER -