TY - JOUR A1 - Shi, Yaoyao A1 - Kuai, Yue A1 - Lei, Lizhen A1 - Weng, Yuanyuan A1 - Berberich-Siebelt, Friederike A1 - Zhang, Xinxia A1 - Wang, Jinjie A1 - Zhou, Yuan A1 - Jiang, Xin A1 - Ren, Guoping A1 - Pan, Hongyang A1 - Mao, Zhengrong A1 - Zhou, Ren T1 - The feedback loop of LITAF and BCL6 is involved in regulating apoptosis in B cell non-Hodgkin's-lymphoma JF - Oncotarget N2 - Dysregulation of the apoptotic pathway is widely recognized as a key step in lymphomagenesis. Notably, LITAF was initially identified as a p53-inducible gene, subsequently implicated as a tumor suppressor. Our previous study also showed LITAF to be methylated in 89.5% B-NHL samples. Conversely, deregulated expression of BCL6 is a pathogenic event in many lymphomas. Interestingly, our study found an oppositional expression of LITAF and BCL6 in B-NHL. In addition, LITAF was recently identified as a novel target gene of BCL6. Therefore, we sought to explore the feedback loop between LITAF and BCL6 in B-NHL. Here, our data for the first time show that LITAF can repress expression of BCL6 by binding to Region A (−87 to +65) containing a putative LITAF-binding motif (CTCCC) within the BCL6 promoter. Furthermore, the regulation of BCL6 targets (PRDM1 or c-Myc) by LITAF may be associated with B-cell differentiation. Results also demonstrate that ectopic expression of LITAF induces cell apoptosis, activated by releasing cytochrome c, cleaving PARP and caspase 3 in B-NHL cells whereas knockdown of LITAF robustly protected cells from apoptosis. Interestingly, BCL6, in turn, could reverse cell apoptosis mediated by LITAF. Collectively, our findings provide a novel apoptotic regulatory pathway in which LITAF, as a transcription factor, inhibits the expression of BCL6, which leads to activation of the intrinsic mitochondrial pathway and tumor apoptosis. Our study is expected to provide a possible biomarker as well as a target for clinical therapies to promote tumor cell apoptosis. KW - LITAF KW - BCL6 KW - apoptosis KW - lymphoma KW - B-cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166500 VL - 7 IS - 47 ER - TY - JOUR A1 - Behr, Daniel S. A1 - Peitsch, Wiebke K. A1 - Hametner, Christian A1 - Lasitschka, Felix A1 - Houben, Roland A1 - Schönhaar, Kathrin A1 - Michel, Julia A1 - Dollt, Claudia A1 - Goebeler, Matthias A1 - Marx, Alexander A1 - Goerdt, Sergij A1 - Schmieder, Astrid T1 - Prognostic value of immune cell infiltration, tertiary lymphoid structures and PD-L1 expression in Merkel cell carcinomas JF - International Journal of Clinical and Experimental Pathology N2 - Merkel cell carcinoma (MCC) is an aggressive, virus-associated, neuroendocrine tumor of the skin mainly affecting immunocompromised patients. Higher intratumoral infiltration with CD3 and CD8 positive T-cells is associated with a better prognosis, highlighting the relevance of the immune system for MCC development and progression. In this study 21 primary MCCs were stained with immune cell markers including CD3, CD4, CD8, CD68, CD20, and S100. Furthermore, tumor-infiltrating neutrophils, tertiary lymphoid structures and PD-L1 expression were analyzed and correlated with overall and recurrence free survival. All MCCs were Merkel Cell Polyomavirus positive. Overall and recurrence-free survival did not correlate with intra-and peritumoral CD3 and CD8 T-cell infiltration. In addition, no significant association regarding prognosis was found for tumor-associated neutrophils, tumor-associated macrophages or PD-L1 positivity in MCCs. Interestingly, the presence of tertiary lymphoid structures (TLS) in the tumor microenvironment significantly correlated with recurrence-free survival (P=0.025). In addition, TLS were significantly associated with a higher CD8/CD4 ratio in the tumor periphery (P=0.032), but not in the center of the tumor (P > 0.999). These results demonstrate for the first time that TLS, easily assessed in paraffin-embedded tissue in the tumor periphery of MCCs, may be a valuable prognostic factor indicating prolonged recurrence free survival. KW - CD8(+) KW - PD-L1 KW - tertiary lymphoid structures KW - immune cell infiltration KW - polymavirus KW - survival KW - lymphocytes KW - responses KW - lung cancer KW - B-cells KW - breast cancer KW - antitumor immunity KW - T-antigens KW - Merkel cell carcinoma Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117720 SN - 1936-2625 VL - 7 IS - 11 ER - TY - JOUR A1 - Wong, David A1 - Winter, Oliver A1 - Hartig, Christina A1 - Siebels, Svenja A1 - Szyska, Martin A1 - Tiburzy, Benjamin A1 - Meng, Lingzhang A1 - Kulkarni, Upasana A1 - Fähnrich, Anke A1 - Bommert, Kurt A1 - Bargou, Ralf A1 - Berek, Claudia A1 - Van, Trung Chu A1 - Bogen, Bjarne A1 - Jundt, Franziska A1 - Manz, Rudolf Armin T1 - Eosinophils and Megakaryocytes Support the Early Growth of Murine MOPC315 Myeloma Cells in Their Bone Marrow Niches JF - PLOS ONE N2 - Multiple myeloma is a bone marrow plasma cell tumor which is supported by the external growth factors APRIL and IL-6, among others. Recently, we identified eosinophils and megakaryocytes to be functional components of the micro-environmental niches of benign bone marrow plasma cells and to be important local sources of these cytokines. Here, we investigated whether eosinophils and megakaryocytes also support the growth of tumor plasma cells in the MOPC315. BM model for multiple myeloma. As it was shown for benign plasma cells and multiple myeloma cells, IL-6 and APRIL also supported MOPC315. BM cell growth in vitro, IL-5 had no effect. Depletion of eosinophils in vivo by IL-5 blockade led to a reduction of the early myeloma load. Consistent with this, myeloma growth in early stages was retarded in eosinophil-deficient Delta dblGATA-1 mice. Late myeloma stages were unaffected, possibly due to megakaryocytes compensating for the loss of eosinophils, since megakaryocytes were found to be in contact with myeloma cells in vivo and supported myeloma growth in vitro. We conclude that eosinophils and megakaryocytes in the niches for benign bone marrow plasma cells support the growth of malignant plasma cells. Further investigations are required to test whether perturbation of these niches represents a potential strategy for the treatment of multiple myeloma. KW - plasma cells KW - human multiple-myeloma KW - immune response KW - receptor expression KW - B-cells KW - stromal cells KW - dexamethasone KW - april KW - survival KW - Interleukin-5 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115269 VL - 9 IS - 10 ER - TY - THES A1 - Duttu, Vallabhapurapu Subrahmanya T1 - Regulation of B lymphocyte terminal differentiation and death by the transcription factor Blimp-1 T1 - Regulation von B zell terminalen differenzierung und death by transcriptionfaktor Blimp-1 N2 - B lymphocyte induced maturation protein-1 (Blimp-1) und X-box-binding protein-1” (XBP-1) sind als Transkriptionsfaktoren unverzichtbar für die terminale Differenzierung von B-Lymphozyten zu Immunglobulin (Ig)-sezernierenden Plasmazellen. Ebenso stellen die unfolded protein response (UPR) und das Spleißen von XBP-1, beides ausgelöst durch erhöhte Ig-Produktion, entscheidende Schritte auf dem Weg zur Plasmazellentstehung dar. Allerdings ist das Molekül/ sind die Moleküle nach wie vor unbekannt, die diesen beiden Ereignissen in der Signalkaskade vorgeschaltet sind. Da die ektope Expression von Blimp-1 in B-Zellen hinreicht, diese zu Plasmazellen zu differenzieren, erscheint es plausibel, dass Blimp-1 das Molekül sein könnte, das die Auslösung einer UPR und das Spleißen von XBP-1 steuert. Dieser Möglichkeit wurde durch ektope Expression von Blimp-1 in der Maus-B-Zell-Lymphomlinie WEHI 231 und in primären B-Zellen aus der Milz von Mäusen nachgegangen. Die ektope Expression von Blimp-1 führte in beiden Zelltypen zur Erhöhung der Ig Produktion, zum Spleißen von XBP-1 und zur Sekretion von Immunglobulinen. Interessanterweise war der N-terminale Anteil von Blimp-1, bestehend aus den Aminosäuren 1-751, hinreichend, um diese Effekte auszulösen, während der C-Terminus, der die Aminosäuren 465-856 umfaßte, keinen Effekt hatte. Darüberhinaus, wurde die Expression von BIP, dessen Gen ein UPR-Zielgen ist, durch ektope Expression von Blimp-1 bzw. dessen N-Terminus in primären B-Zellen erhöht. Diese Ergebnisse zeigen deutlich, dass Blimp-1, speziell dessen N-terminale Domäne, hinreichend ist, um eine UPR und die Prozessierung von XBP-1 auszulösen, was zur Ig-Sekretion von B-Zellen führt. N2 - B lymphocyte induced maturation protein-1 (Blimp-1) and X-box-binding protein-1 (XBP-1) are indispensible transcription factors required for B lymphocyte terminal differentiation into Ig secreting plasma cells. Occurrence of an unfolded protein response (UPR) and XBP-1 splicing, due to elevated Ig levels, are critical events during plasma cell generation. However, the upstream molecule sufficient to trigger these events remain elusive. Because ectopic expression of Blimp-1 in B cells is sufficient to generate plasma cells, it is plausible that Blimp-1 might be the upstream molecule, sufficient for the induction of UPR and XBP-1 splicing. The results from the current study indicate that ectopic expression of Blimp-1 or its N-terminal domain, in B cells, is sufficient to induce XBP-1 splicing, UPR and Ig (immunoglobulin) secretion. Further more Blimp-1 is able to directly repress the antiapoptotic gene A1, by binding to specific DNA elements in A1 promoter. This repression of A1 by Blimp-1 seems to be an important prerequisite for Plasma cell differentiation because ectopic expression of A1 in primary B cells resulted in reduced immunoglobulin secretion. KW - B-Lymphozyt KW - Zelldifferenzierung KW - Transkriptionsfaktor KW - Blimp-1 KW - B-zells KW - Immunologie KW - Blimp-1 KW - B-cells KW - Immunology Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17158 ER -