TY - THES A1 - Kleineisel, Jonas T1 - Variational networks in magnetic resonance imaging - Application to spiral cardiac MRI and investigations on image quality T1 - Variational Networks in der Magnetresonanztomographie - Anwendung auf spirale Herzbildgebung und Untersuchungen zur Bildqualität N2 - Acceleration is a central aim of clinical and technical research in magnetic resonance imaging (MRI) today, with the potential to increase robustness, accessibility and patient comfort, reduce cost, and enable entirely new kinds of examinations. A key component in this endeavor is image reconstruction, as most modern approaches build on advanced signal and image processing. Here, deep learning (DL)-based methods have recently shown considerable potential, with numerous publications demonstrating benefits for MRI reconstruction. However, these methods often come at the cost of an increased risk for subtle yet critical errors. Therefore, the aim of this thesis is to advance DL-based MRI reconstruction, while ensuring high quality and fidelity with measured data. A network architecture specifically suited for this purpose is the variational network (VN). To investigate the benefits these can bring to non-Cartesian cardiac imaging, the first part presents an application of VNs, which were specifically adapted to the reconstruction of accelerated spiral acquisitions. The proposed method is compared to a segmented exam, a U-Net and a compressed sensing (CS) model using qualitative and quantitative measures. While the U-Net performed poorly, the VN as well as the CS reconstruction showed good output quality. In functional cardiac imaging, the proposed real-time method with VN reconstruction substantially accelerates examinations over the gold-standard, from over 10 to just 1 minute. Clinical parameters agreed on average. Generally in MRI reconstruction, the assessment of image quality is complex, in particular for modern non-linear methods. Therefore, advanced techniques for precise evaluation of quality were subsequently demonstrated. With two distinct methods, resolution and amplification or suppression of noise are quantified locally in each pixel of a reconstruction. Using these, local maps of resolution and noise in parallel imaging (GRAPPA), CS, U-Net and VN reconstructions were determined for MR images of the brain. In the tested images, GRAPPA delivers uniform and ideal resolution, but amplifies noise noticeably. The other methods adapt their behavior to image structure, where different levels of local blurring were observed at edges compared to homogeneous areas, and noise was suppressed except at edges. Overall, VNs were found to combine a number of advantageous properties, including a good trade-off between resolution and noise, fast reconstruction times, and high overall image quality and fidelity of the produced output. Therefore, this network architecture seems highly promising for MRI reconstruction. N2 - Eine Beschleunigung des Bildgebungsprozesses ist heute ein wichtiges Ziel von klinischer und technischer Forschung in der Magnetresonanztomographie (MRT). Dadurch könnten Robustheit, Verfügbarkeit und Patientenkomfort erhöht, Kosten gesenkt und ganz neue Arten von Untersuchungen möglich gemacht werden. Da sich die meisten modernen Ansätze hierfür auf eine fortgeschrittene Signal- und Bildverarbeitung stützen, ist die Bildrekonstruktion ein zentraler Baustein. In diesem Bereich haben Deep Learning (DL)-basierte Methoden in der jüngeren Vergangenheit bemerkenswertes Potenzial gezeigt und eine Vielzahl an Publikationen konnte deren Nutzen in der MRT-Rekonstruktion feststellen. Allerdings besteht dabei das Risiko von subtilen und doch kritischen Fehlern. Daher ist das Ziel dieser Arbeit, die DL-basierte MRT-Rekonstruktion weiterzuentwickeln, während gleichzeitig hohe Bildqualität und Treue der erzeugten Bilder mit den gemessenen Daten gewährleistet wird. Eine Netzwerkarchitektur, die dafür besonders geeignet ist, ist das Variational Network (VN). Um den Nutzen dieser Netzwerke für nicht-kartesische Herzbildgebung zu untersuchen, beschreibt der erste Teil dieser Arbeit eine Anwendung von VNs, welche spezifisch für die Rekonstruktion von beschleunigten Akquisitionen mit spiralen Auslesetrajektorien angepasst wurden. Die vorgeschlagene Methode wird mit einer segmentierten Rekonstruktion, einem U-Net, und einem Compressed Sensing (CS)-Modell anhand von qualitativen und quantitativen Metriken verglichen. Während das U-Net schlecht abschneidet, zeigen die VN- und CS-Methoden eine gute Bildqualität. In der funktionalen Herzbildgebung beschleunigt die vorgeschlagene Echtzeit-Methode mit VN-Rekonstruktion die Aufnahme gegenüber dem Goldstandard wesentlich, von etwa zehn zu nur einer Minute. Klinische Parameter stimmen im Mittel überein. Die Bewertung von Bildqualität in der MRT-Rekonstruktion ist im Allgemeinen komplex, vor allem für moderne, nichtlineare Methoden. Daher wurden anschließend forgeschrittene Techniken zur präsizen Analyse von Bildqualität demonstriert. Mit zwei separaten Methoden wurde einerseits die Auflösung und andererseits die Verstärkung oder Unterdrückung von Rauschen in jedem Pixel eines untersuchten Bildes lokal quantifiziert. Damit wurden lokale Karten von Auflösung und Rauschen in Rekonstruktionen durch Parallele Bildgebung (GRAPPA), CS, U-Net und VN für MR-Aufnahmen des Gehirns berechnet. In den untersuchten Bildern zeigte GRAPPA gleichmäßig eine ideale Auflösung, aber merkliche Rauschverstärkung. Die anderen Methoden verhalten sich lokal unterschiedlich je nach Struktur des untersuchten Bildes. Die gemessene lokale Unschärfe unterschied sich an den Kanten gegenüber homogenen Bildbereichen, und Rauschen wurde überall außer an Kanten unterdrückt. Insgesamt wurde für VNs eine Kombination von verschiedenen günstigen Eigenschaften festgestellt, unter anderem ein guter Kompromiss zwischen Auflösung und Rauschen, schnelle Laufzeit, und hohe Qualität und Datentreue der erzeugten Bilder. Daher erscheint diese Netzwerkarchitektur als ein äußerst vielversprechender Ansatz für MRT-Rekonstruktion. KW - Kernspintomografie KW - Convolutional Neural Network KW - Maschinelles Lernen KW - Bildgebendes Verfahren KW - magnetic resonance imaging KW - convolutional neural network KW - variational network KW - cardiac imaging KW - machine learning KW - local point-spread function KW - resolution KW - g-factor Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-347370 ER - TY - THES A1 - Hock, Michael T1 - Methods for Homogenization of Spatio-Temporal B\(_0\) Magnetic Field Variations in Cardiac MRI at Ultra-High Field Strength T1 - Methoden zur Homogenisierung räumlicher und zeitlicher Variationen des B\(_0\)-Feldes in der kardialen Ultrahochfeld-MRT N2 - Cardiovascular disease is one of the leading causes of death worldwide and, so far, echocardiography, nuclear cardiology, and catheterization are the gold standard techniques used for its detection. Cardiac magnetic resonance (CMR) can replace the invasive imaging modalities and provide a "one-stop shop" characterization of the cardiovascular system by measuring myocardial tissue structure, function and perfusion of the heart, as well as anatomy of and flow in the coronary arteries. In contrast to standard clinical magnetic resonance imaging (MRI) scanners, which are often operated at a field strength of 1.5 or 3 Tesla (T), a higher resolution and subsequent cardiac parameter quantification could potentially be achieved at ultra-high field, i.e., 7 T and above. Unique insights into the pathophysiology of the heart are expected from ultra-high field MRI, which offers enhanced image quality in combination with novel contrast mechanisms, but suffers from spatio-temporal B0 magnetic field variations. Due to the resulting spatial misregistration and intra-voxel dephasing, these B0-field inhomogeneities generate a variety of undesired image artifacts, e.g., artificial image deformation. The resulting macroscopic field gradients lead to signal loss, because the effective transverse relaxation time T2* is shortened. This affects the accuracy of T2* measurements, which are essential for myocardial tissue characterization. When steady state free precession-based pulse sequences are employed for image acquisition, certain off-resonance frequencies cause signal voids. These banding artifacts complicate the proper marking of the myocardium and, subsequently, systematic errors in cardiac function measurements are inevitable. Clinical MR scanners are equipped with basic shim systems to correct for occurring B0-field inhomogeneities and resulting image artifacts, however, these are not sufficient for the advanced measurement techniques employed for ultra-high field MRI of the heart. Therefore, this work focused on the development of advanced B0 shimming strategies for CMR imaging applications to correct the spatio-temporal B0 field variations present in the human heart at 7 T. A novel cardiac phase-specific shimming (CPSS) technique was set up, which featured a triggered B0 map acquisition, anatomy-matched selection of the shim-region-of-interest (SROI), and calibration-based B0 field modeling. The influence of technical limitations on the overall spherical harmonics (SH) shim was analyzed. Moreover, benefits as well as pitfalls of dynamic shimming were debated in this study. An advanced B0 shimming strategy was set up and applied in vivo, which was the first implementation of a heart-specific shimming approach in human UHF MRI at the time. The spatial B0-field patterns which were measured in the heart throughout this study contained localized spots of strong inhomogeneities. They fluctuated over the cardiac cycle in both size and strength, and were ideally addressed using anatomy-matched SROIs. Creating a correcting magnetic field with one shim coil, however, generated eddy currents in the surrounding conducting structures and a resulting additional, unintended magnetic field. Taking these shim-to-shim interactions into account via calibration, it was demonstrated for the first time that the non-standard 3rd-order SH terms enhanced B0-field homogeneity in the human heart. However, they were attended by challenges for the shim system hardware employed in the presented work, which was indicated by the currents required to generate the optimal 3rd-order SH terms exceeding the dynamic range of the corresponding shim coils. To facilitate dynamic shimming updated over the cardiac cycle for cine imaging, the benefit of adjusting the oscillating CPSS currents was found to be vital. The first in vivo application of the novel advanced B0 shimming strategy mostly matched the simulations. The presented technical developments are a basic requirement to quantitative and functional CMR imaging of the human heart at 7 T. They pave the way for numerous clinical studies about cardiac diseases, and continuative research on dedicated cardiac B0 shimming, e.g., adapted passive shimming and multi-coil technologies. N2 - Herz-Kreislauf-Erkrankungen zählen zu den häufigsten Todesursachen weltweit und werden bisher in der Regel mittels Echokardiographie, Nuklearkardiologie und Katheterisierung untersucht. Die kardiale Magnetresonanztomographie hat das Potential diese invasiven Bildgebungsmodalitäten zu ersetzen. Dabei können sowohl das kardiovaskuläre System anhand der myokardialen Gewebestruktur sowie der Funktion und Perfusion des Herzens als auch Anatomie und Blutfluss der Koronararterien während einer einzigen Untersuchung charakterisiert werden. Im Gegensatz zu den weit verbreiteten klinischen Magnetresonanztomographie- (MRT) Geräten, welch häufig bei magnetischen Feldstärken zwischen 1.5 und 3T operieren, ermöglichen Feldstärken von 7 Tesla und mehr eine höhere Auflösung und somit eine akkuratere Quantifizierung kardialer Parameter. Die Ultrahochfeld-Magnetresonanztomographie (UHF-MRT) ermöglicht einzigartige Einblicke in die Pathophysiologie des Herzens. Neuartige Kontrastmechanismen und die verbesserte Bildqualität leiden jedoch unter Inhomogenitäten des statischen magnetischen B0-Feldes. Aufgrund der daraus resultierenden falschen räumlichen Registrierung der Voxel und einer Dephasierung des Signals innerhalb eines Voxels erzeugen diese Inhomogenitäten des B0-Feldes eine Vielzahl unerwünschter Bildartefakte, beispielsweise eine künstliche Deformation des Bildes. Die resultierenden makroskopischen Gradienten führen zu Signalverlust und beeinträchtigen die Messung der effektiven transversalen T2*-Relaxationszeit, welche für die Charakterisierung myokardialen Gewebes essentiell ist. Vor allem bei der Bildakquisition mittels der Steady State Free Precession Methode führen Inhomogenitäten des B0-Feldes zu Signalauslöschungen. Die dadurch entstehenden Bildartefakte erschweren die genaue Markierung des Myokards und haben so systematische Fehler bei der Bestimmung der kardialen Funktion zur Folge. Klinische MRT-Geräte sind dabei mit sogenannten Shim-Systemen ausgestattet um die Inhomogenitäten des B0-Feldes zu korrigieren. Für die kardiale UHF-MRT des Herzens sind diese standardisierten Shim-Systeme allerdings nicht mehr ausreichend. Im Fokus stand deshalb die Entwicklung moderner Methoden zur räumlichen und zeitlichen Korrektur der B0-Inhomogenitäten, welche als „Shimming“ bezeichnet wird, für die kardiale UHF-MRT. Es wurde eine neue, herzphasen-spezifische Shimming-Strategie untersucht, welche auf der getriggerten Datenaufnahme, der Optimierung für die Anatomie des Herzens, sowie der kalibrierungsbasierten Modellierung des korrigierenden Magnetfeldes basierte. Zudem wurde der Einfluss technischer Limitationen der Hardware auf das Shimming, insbesondere das dynamische Shimming, in dieser Studie erörtert. Schließlich wurde die entwickelte neuartige Shimming-Strategie in vivo evaluiert, welche zu diesem Zeitpunkt die erste Implementierung einer herzspezifischen Shimming-Strategie in der humanen kardialen UHF-MRT darstellte. Räumlich wies das B0-Feld, welches im Rahmen dieser Studie im Herzen gemessen wurde, lokalisierte Inhomogenitäten im Myokardium auf. Diese variierten zudem in ihrer Größe sowie der Stärke der B0-Inhomogenität zeitlich über den Herzzyklus hinweg und ließen sich mittels anatomisch angepasstem, kalibrierungsbasiertem Shimming deutlich reduzieren. Erzeugt man ein korrigierendes Magnetfeld mittels einer Shim-Spule, so werden jedoch Wirbelströme in nahen leitenden Strukturen und weiterhin ein zusätzliches, unerwünschtes Magnetfeld erzeugt. Berücksichtigt man diese Wechselwirkungen zwischen den verschiedenen Shim-Spulen, konnte erstmalig der Vorteil von korrigierenden Magnetfeldern in der Form von Kugelflächenfunktionen der dritten Ordnung für die kardiale UHF-MRT gezeigt werden. Hierbei waren jedoch die erforderlichen, besonders starken Ströme in den Shim-Spulen zu berücksichtigen, welche über den Herzzyklus hinweg oszillierten und für dynamisches Shimming angepasst werden sollten. Die erste in vivo Anwendung der neu entwickelten Shim-Strategie stimmte gut mit den vorigen Simulationen überein. Die vorgestellten technischen Entwicklungen stellen grundlegende Anforderungen an die quantitative und funktionelle kardialer UHF-MRT dar. Klinische Studien zu kardialen Erkrankungen wie der Herzinsuffizienz erscheinen nun ebenso in Reichweite wie weitere Forschung zu kardialem B0-Shimming basierend auf angepasstem passiven Shimming sowie Multikanal-Spulen. KW - Kernspintomografie KW - Bildgebendes Verfahren KW - 7 T KW - B0 KW - Cardiac MRI KW - Shimming KW - Ultrahigh field Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-348213 ER - TY - THES A1 - Portmann, Johannes T1 - Accelerated inversion recovery MRI of the myocardium using spiral acquisition T1 - Beschleunigte Inversion-Recovery MR-Bildgebung des Myokards mit spiralen Auslesezügen N2 - This work deals with the acceleration of cardiovascular MRI for the assessment of functional information in steady-state contrast and for viability assessment during the inversion recovery of the magnetization. Two approaches are introduced and discussed in detail. MOCO-MAP uses an exponential model to recover dynamic image data, IR-CRISPI, with its low-rank plus sparse reconstruction, is related to compressed sensing. MOCO-MAP is a successor to model-based acceleration of parametermapping (MAP) for the application in the myocardial region. To this end, it was augmented with a motion correction (MOCO) step to allow exponential fitting the signal of a still object in temporal direction. Iteratively, this introduction of prior physical knowledge together with the enforcement of consistency with the measured data can be used to reconstruct an image series from distinctly shorter sampling time than the standard exam (< 3 s opposed to about 10 s). Results show feasibility of the method as well as detectability of delayed enhancement in the myocardium, but also significant discrepancies when imaging cardiac function and artifacts caused already by minor inaccuracy of the motion correction. IR-CRISPI was developed from CRISPI, which is a real-time protocol specifically designed for functional evaluation of image data in steady-state contrast. With a reconstruction based on the separate calculation of low-rank and sparse part, it employs a softer constraint than the strict exponential model, which was possible due to sufficient temporal sampling density via spiral acquisition. The low-rank plus sparse reconstruction is fit for the use on dynamic and on inversion recovery data. Thus, motion correction is rendered unnecessary with it. IR-CRISPI was equipped with noise suppression via spatial wavelet filtering. A study comprising 10 patients with cardiac disease show medical applicability. A comparison with performed traditional reference exams offer insight into diagnostic benefits. Especially regarding patients with difficulty to hold their breath, the real-time manner of the IR-CRISPI acquisition provides a valuable alternative and an increase in robustness. In conclusion, especially with IR-CRISPI in free breathing, a major acceleration of the cardiovascular MR exam could be realized. In an acquisition of less than 100 s, it not only includes the information of two traditional protocols (cine and LGE), which take up more than 9.6 min, but also allows adjustment of TI in retrospect and yields lower artifact level with similar image quality. N2 - Diese Arbeit behandelt die Beschleunigung der kardiovaskulären MRT zum Erfassen funktioneller Information bei Steady-State-Kontrast und zur Unter- suchung der Vitalität bei Wiederherstellung der Magnetisierung nach ihrer Inversion. Zwei Ansätze werden eingeführt und im Detail diskutiert: MOCO- MAP, welches ein exponentielles Modell nutzt, um dynamische Daten zu rekonstruieren, und IR-CRISPI, welches mit seinem “low-rank plus sparse"- Algorithmus mit Compressed Sensing verwandt ist. MOCO-MAP ist der Nachfolger der modellbasierten Beschleunigung des Parameter-Mappings (MAP) für die Anwendung im Bereich des Myokards. Hierzu wurde es mit einer Bewegungskorrektur (MOCO) versehen, um expo- nentielles Fitten eines unbewegten Objects in Zeitrichtung zu ermöglichen. Das Einbringen dieses physikalischen Vorwissens zusammen mit dem Erzwin- gen von Konsistenz mit den Messdaten wird dazu genutzt, iterativ eine Bildfolge aus Daten einer deutlich kürzeren Messung als herkömmlich zu rekonstruieren (< 3 s gegenüber ca. 10 s). Die Ergebnisse zeigen die Umsetz- barkeit der Methode sowie die Nachweisbarkeit von Delayed Enhancements im Myokard, aber deutliche funktionelle Abweichungen und Artefakte bereits aufgrund von kleinen Ungenauigkeiten der Bewegungskorrektur. IR-CRISPI geht aus CRISPI hervor, welches zur Auswertung von funk- tionellen Echtzeitdaten bei konstantem Kontrast dient. Mit der Rekon- struktion durch getrennte Berechnung von niedrigrangigem und dünnbe- setztem Matrixanteil wird hier bei der Datenrekonstruktion weniger stark eingeschränkt als bei einem strikten exponentiellen Modell. Die pirale Auf- nahmeweise erlaubt hierzu ausreichend effiziente k-Raumabdeckung. Die “low-rank plus sparse"-Rekonstruktion ist kompatibel mit dynamischen und mit Inversion-Recovery-Daten. Eine Bewegungskorrektur ist folglich nicht nötig. IR-CRISPI wurde mit einer Rauschunterdrückung durch räumliche Wavelet- Filterung versehen. Eine Studie, die 10 Patienten einschließt, zeigt die Eignung für die medizinische Anwendung. Der Vergleich mit herkömm- lichen Aufnahmetechniken lässt auf den gewonnenen diagnostischen Nutzen schließen. Besonders für Patienten, die Schwierigkeiten mit dem Luftanhal- ten haben, eröffnet diese Echtzeitaufnahmemethode eine wertvolle Alterna- tive und erhöhte Stabilität. Am Ende konnte gerade mittels IR-CRISPI eine bemerkenswerte Beschleu- nigung der kardiovaskulären MR-Untersuchung verwirklicht werden. Trotz der kurzen Aufnahmezeit von weniger als 100 s für den kompletten linken Ven- trikel schließt es nicht nur die Information zweier herkömmlicher Protokolle mit ein (Cine und LGE), die zusammen mehr als 9,6 min dauern, sondern es erlaubt zusätzlich auch das Einstellen der TI-Zeit im Nachhinein und liefert Ergebnisse mit geringerem Artefaktlevel bei ähnlicher Bildqualität KW - Kernspintomografie KW - Herzfunktion KW - Herzmuskel KW - Bildgebendes Verfahren KW - Echtzeit KW - cine loop KW - late enhancement KW - late gadolinium-enhancement KW - magnetic resonance imaging KW - real-time imaging KW - spiral trajectory Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-302822 ER - TY - THES A1 - Eirich, Philipp T1 - Accelerated non-Cartesian cardiovascular MR Imaging at 3T and 7T T1 - Beschleunigte nicht-kartesische MRT Herzbildgebung bei 3T und 7T N2 - In this work, accelerated non-Cartesian Magnetic Resonance Imaging (MRI) methods were established and applied to cardiovascular imaging (CMR) at different magnetic field strengths (3T and 7T). To enable rapid data acquisition, highly efficient spiral k-space trajectories were created. In addition, hybrid sampling patterns such as the twisting radial lines (TWIRL) k-space trajectory were studied. Imperfections of the dynamic gradient system of a MR scanner result in k-space sampling errors. Ultimately, these errors can lead to image artifacts in non-Cartesian acquisitions. Among other reasons such as an increased reconstruction complexity, they cause the lack of spiral sequences in clinical routine compared to standard Cartesian imaging. Therefore, the Gradient System Transfer Functions (GSTFs) of both scanners were determined and used for k-space trajectory correction in post-correction as well as in terms of a pre-emphasis. The GSTF pre-emphasis was implemented as a fully automatic procedure, which enabled a precise correction of arbitrary gradient waveforms for double-oblique slice orientations. Consequently, artifacts due to trajectory errors could be mitigated, which resulted in high image quality in non-Cartesian MRI. Additionally, the GSTF correction was validated by measuring pre-emphasized spiral gradient outputs, which showed high agreement with the theoretical gradient waveforms. Furthermore, it could be demonstrated that the performance of the GSTF correction is superior to a simple delay compensation approach. The developed pulse sequences were applied to gated as well as real-time CMR. Special focus lied on the implementation of a spiral imaging protocol to resolve the beating heart of animals and humans in real time and free breathing. In order to achieve real-time CMR with high spatiotemporal resolution, k-space undersampling was performed. For this reason, efficient sampling strategies were developed with the aim to facilitate compressed sensing (CS) during image reconstruction. The applied CS approach successfully removed aliasing artifacts and yielded high-resolution cardiac image series. Image reconstruction was performed offline in all cases such that the images were not available immediately after acquisition at the scanner. Spiral real-time CMR could be performed in free breathing, which led to an acquisition time of less than 1 minute for a whole short-axis stack. At 3T, the results were compared to the gold standard of electrocardiogram-gated Cartesian CMR in breath hold, which revealed similar values for important cardiovascular functional and volumetric parameters. This paves the way to an application of the developed framework in clinical routine of CMR. In addition, the spiral real-time protocol was transferred to swallowing and speech imaging at 3T, and first images were presented. The results were of high quality and confirm the straightforward utilization of the spiral sequence in other fields of MRI. In general, the GSTF correction yielded high-quality images at both field strengths, 3T and 7T. Off-resonance related blurring was mitigated by applying non-Cartesian readout gradients of short duration. At 7T, however, B1-inhomogeneity led to image artifacts in some cases. All in all, this work demonstrated great advances in accelerating the MRI process by combining efficient, undersampled non-Cartesian k-space coverage with CS reconstruction. Trajectory correction using the GSTF can be implemented at any scanner model and enables non-Cartesian imaging with high image quality. Especially MRI of dynamic processes greatly benefits from the presented rapid imaging approaches. N2 - In der vorliegenden Arbeit wurden Methoden der beschleunigten Magnetresonanztomographie (MRT) etabliert, welche auf nicht-kartesischer Datenaufnahme beruhen. Diese wurden insbesondere in der Herzbildgebung bei verschiedenen Magnetfeldstärken (3T und 7T) angewendet. Der Fokus lag auf der Entwicklung von hocheffizienten spiralförmigen k-Raum Trajektorien, mit dem Zweck sehr kurze Aufnahmezeiten zu ermöglichen. Zusätzlich wurde eine hybride k-Raum Trajektorie untersucht, die sogenannte "twisting radial lines (TWIRL)" k-Raum Trajektorie. Ungenauigkeiten des dynamischen Gradientensystems eines MRT Scanners resultieren in fehlerbehafteter k-Raum Abtastung während der Datenaufnahme. In der nicht-kartesischen Bildgebung kann dies letztendlich zu Artefakten im rekonstruierten Bild führen. Zusammen mit anderen Hemmnissen, wie beispielsweise einer komplexeren Bildrekonstruktion, sind sie verantwortlich dafür, dass noch immer mehrheitlich kartesische Bildgebungssequenzen in der klinischen Routine durchgeführt werden. Aus diesem Grund wurden die Übertragungsfunktionen der Gradientensysteme der verwendeten MRT Scanner (eng. "Gradient System Transfer Function (GSTF)") bestimmt und für k-Raum Trajektorienkorrekturen verwendet. Diese Korrektur wurde sowohl in der Bildrekonstruktion nach bereits erfolgter Datenaufnahme angewendet als auch im Rahmen einer Vorverstärkung bevor die Gradienten ausgespielt werden. Diese Vorverstärkung wurde als vollständig automatisierter Prozess implementiert und ermöglichte eine präzise Korrektur beliebig gewählter Gradientenfunktionen aller Schichtorientierungen. Auf diesem Wege konnten die durch Trajektorienfehler verursachten Bildartefakte kompensiert werden, was zu hoher Bildqualität in der nicht-kartesischen MRT Bildgebung führte. Des Weiteren wurde die Gradientenkorrektur durch Messungen der tatsächlich ausgespielten Gradientenformen validiert. Diese wiesen eine hohe Übereinstimmung mit den theoretisch zu erwarteten Gradientenformen auf. Darüber hinaus wurde gezeigt, dass die auf der Impulsantwort basierende, umfassende Gradientenkorrektur eine höhere Bildqualität ermöglicht als eine einfache Korrektur mittels globaler Zeitverschiebungen. Die entwickelten MRT Sequenzen wurden sowohl in der segmentierten als auch in der Echtzeit-Herzbildgebung angewendet. Im Speziellen lag der Fokus auf der Implementierung eines Protokolls für die spirale MRT Bildgebung, welche das schlagende Herz von Tieren und Menschen in Echtzeit und freier Atmung auflösen kann. Um Echtzeit-Herzbildgebung mit hoher räumlicher und zeitlicher Auflösung zu vereinen, wurde der k-Raum unterabgetastet. In diesem Zusammenhang wurden Strategien zur effizienten und komprimierten Datenaufnahme entwickelt, unter Anwendung der Modell-basierten "Compressed Sensing" (CS)-Technik. Diese Methode reduziert Aliasing-Artefakte in der Bildrekonstruktion von unterabgetasteten Daten und ermöglicht deshalb hochaufgelöste, dynamische Echtzeit-Bilderserien des schlagenden Herzens. Allerdings wurden die gemessenen Daten stets extern rekonstruiert, sodass die Bilder nicht unmittelbar nach der Aufnahme am MRT Scanner verfügbar waren. Die spirale Echtzeit-Herzbildgebung konnte in freier Atmung durchgeführt werden, was eine Messzeit aller Schichten in der kurzen Herzachse in unter 1 Minute ermöglichte. Bei 3T wurden die Ergebnisse mit dem Goldstandard der mittels eines Elektrokardiogramms segmentierten kartesischen Herzbildgebung im Atemstopp verglichen und es konnte gezeigt werden, dass wichtige funktionelle und volumetrische Herzparameter übereinstimmen. Dies ebnet den Weg zur Anwendung des entwickelten Protokolls in der klinischen Routine der Herzbildgebung am MRT. Darüber hinaus wurde das Protokoll in der Echtzeit-Bildgebung von Schlucken und Sprechen bei 3T getestet. Die Ergebnisse waren ebenfalls von hoher Qualität und bestätigen den unkomplizierten Transfer der spiralen Sequenz in andere Bereiche der MRT Bildgebung. Insgesamt lieferte die GSTF-Korrektur Bilder von hoher Qualität bei beiden Feldstärken, 3T und 7T. Eine durch off-Resonanz verursachte Bildunschärfe wurde durch kurze Auslesezeiten der nicht-kartesischen Gradienten abgeschwächt. Allerdings führte B1-Inhomogenität in manchen Fällen zu Bildartefakten bei 7T. Die vorliegende Arbeit stellt einen wesentlichen Beitrag zur Beschleunigung des MRT Bildgebungsprozesses dar, indem effiziente, unterabgetastete nicht-kartesische k-Raum Trajektorien mit der CS-Rekonstruktionstechnik kombiniert wurden. Trajektorien-Korrektur basierend auf der GSTF kann prinzipiell an jedem MRT Scanner implementiert werden und legt den Grundstein für nicht-kartesische Bildgebung mit hoher Bildqualität. Insbesondere die Bildgebung von dynamischen Prozessen profitiert von den hier vorgestellten beschleunigten Methoden zur Datenaufnahme. KW - Kernspintomografie KW - Bildgebendes Verfahren KW - Spirale KW - Artefakt KW - Übertragungsfunktion KW - MRT KW - MRI KW - Herzbildgebung KW - Cardiac imaging KW - Beschleunigte Bildgebung KW - Accelerated imaging KW - Gradient System Transfer Function KW - Echtzeitbildgebung KW - Real-time imaging KW - Compressed sensing Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-253974 ER - TY - THES A1 - Endres, Ralph Julian T1 - Networks of fear: Functional connectivity of the amygdala, the insula and the anterior cingulate cortex in two subtypes of specific phobia T1 - Netzwerke der Angst: Funktionelle Konnektivität der Amygdala, der Insula und des anterioren cingulären Cortex in zwei Subtypen der spezifischen Phobie N2 - Neuroimaging research has highlighted the relevance of well-balanced functional brain interactions as an essential basis for efficient emotion regulation. In contrast, abnormal coupling of fear-processing regions such as the amygdala, the anterior cingulate cortex (ACC) and the insula could be an important feature of anxiety disorders. Although activity alterations of these regions have been frequently reported in specific phobia, little is known about their functional interactions during phobogenic stimulus processing. To explore these interrelationships in two subtypes of specific phobia – i.e., the blood-injection-injury subtype and the animal subtype – functional connectivity (FC) was analyzed in three fMRI studies. Two studies examined fear processing in a dental phobia group (DP), a snake phobia group (SP) and a healthy control group (HC) during visual phobogenic stimuli presentation while a third study investigated differences between auditory and visual stimuli presentation in DP and HC. Due to a priori hypotheses of impaired interactions between the amygdala, the ACC and the insula, a first analysis was conducted to explore the FC within these three regions of interest. Based on emerging evidence of functionally diverse subregions, the ACC was further divided into a subgenual, pregenual and dorsal ACC and the insula was divided into a ventral-anterior, dorsal-anterior and posterior region. Additionally, an exploratory seed-to-voxel analysis using the amygdala, ACC and insula as seeds was conducted to scan for connectivity patterns across the whole brain. The analyses revealed a negative connectivity of the ACC and the amygdala during phobogenic stimulus processing in controls. This connectivity was predominantly driven by the affective ACC subdivision. By contrast, SP was characterized by an increased mean FC between the examined regions. Interestingly, this phenomenon was specific for auditory, but not visual symptom provocation in DP. During visual stimulus presentation, however, DP exhibited further FC alterations of the ACC and the insula with pre- and orbitofrontal regions. These findings mark the importance of balanced interactions between fear-processing regions in specific phobia, particularly of the inhibitory connectivity between the ACC and the amygdala. Theoretically, this is assumed to reflect top-down inhibition by the ACC during emotion regulation. The findings support the suggestion that SP particularly is characterized by excitatory, or missing inhibitory, (para-) limbic connectivity, reflecting an overshooting fear response based on evolutionary conserved autonomic bottom-up pathways. Some of these characteristics applied to DP as well but only under the auditory stimulation, pointing to stimulus dependency. DP was further marked by altered pre- and orbitofrontal coupling with the ACC and the insula which might represent disturbances of superordinate cognitive control on basal emotion processes. These observations strengthen the assumption that DP is predominantly based on evaluation-based fear responses. In conclusion, the connectivity patterns found may depict an intermediate phenotype that possibly confers risks for inappropriate phobic fear responses. The findings presented could also be of clinical interest. Particularly the ACC – amygdala circuit may be used as a predictive biomarker for treatment response or as a promising target for neuroscience-focused augmentation strategies as neurofeedback or repetitive transcranial magnetic stimulation. N2 - Neurowissenschaftliche Erkenntnisse der letzten Jahre verdeutlichten die Relevanz intakter neuronaler Netzwerke als Grundlage adäquater Emotionsregulationsmechanismen. Funktionelle Dysregulationen zwischen angstverarbeitenden Regionen wie der Amygdala, der Insula oder dem anterioren cingulären Cortex (ACC) könnten hingegen einen wichtigen pathophysiologischen Mechanismus von Angststörungen darstellen. Obwohl Aktivitätsunterschiede dieser Regionen wiederholt für spezifische Phobien beschrieben wurden, sind deren funktionelle Interaktionen während phobischer Stimulusverarbeitung kaum erforscht. Zur Untersuchung dieser Interaktionen in zwei Subtypen der spezifischen Phobie – dem Blut-Spritzen-Verletzungs-Typus und dem Tier-Typus – wurden im Rahmen dieser Arbeit funktionelle Konnektivitäts-Analysen (FK) anhand dreier fMRT- (funktionelle Magnetresonanztomographie) Studien durchgeführt. Zwei Studien untersuchten die neurale Verarbeitung visueller phobischer Stimuli in einer dentalphobischen Gruppe (DP), einer schlangenphobischen Gruppe (SP) sowie einer Kontrollgruppe (KG). Ergänzend verglich eine dritte Studie den Einfluss visueller und akustischer Stimuli für die DP und eine KG. Basierend auf der a priori-Hypothese einer veränderten FK zwischen der Amygdala, der Insula und dem ACC wurden deren spezifische Konnektivitätsmuster untersucht. Aufgrund funktionell unterschiedlicher Subregionen erfolgte eine Untergliederung des ACC in eine subgenuale, perigenuale und dorsalen Region. Analog dazu wurde die Insula in eine ventral-anteriore, dorsal-anteriore und posteriore Region unterteilt. Um darüberhinausgehender Konnektivitätsmuster über das gesamte Gehirn zu ermitteln, wurde eine abschließende Seed-to-Voxel-Analyse mit den Seeds Amygdala, Insula und ACC durchgeführt. In der Auswertung zeigte sich eine negative FK der Amygdala und des ACC während phobischer Stimulusverarbeitung in der KG, die insbesondere auf die ventrale Division des ACC zurückzuführen war. Die phobischen Gruppen hingegen waren im Vergleich zu der Kontrollgruppe durch eine erhöhte Konnektivität der untersuchten Regionen gekennzeichnet. Dieser Effekt war bei der DP spezifisch für die akustische Stimulusmodalität. Bei visueller Stimuluspräsentation zeigten sich hingegen veränderte Konnektivitätsmuster des ACC und der Insula mit prä- und orbitofrontalen Regionen. Insbesondere die negative FK der Amygdala und des ACC, die theoretisch auf einer top-down-Inhibition des ACC über die Amygdala basiert, erscheint einen wichtigen Bestandteil einer effektiven emotionalen Kontrolle darzustellen. In beiden phobischen Gruppen fehlte diese Inhibition. Die erhöhte FK (para-)limbischer Konnektivität der SP könnte hingegen die verstärkte Rekrutierung autonomischer bottom-up-Prozesse als zugrundeliegendem Mechanismus der überschießenden und irrationalen Angstreaktion repräsentieren. Diese Charakteristika konnten in der DP nur für die akustische Stimulusmodalität beobachtet werden. Während der visuellen Stimuluspräsentation war die DP durch Dysregulationen prä- und orbitofrontaler Regionen gekennzeichnet, welche eine beeinträchtigte kognitive Kontrolle über grundlegende Emotionsprozesse widerspiegeln könnte. Dies entspricht der Annahme, dass die DP vor allem durch evaluationsbasierte Furchtreaktionen gekennzeichnet ist, während in der SP als Vertreter des Tier-Typus evolutionär konservierte, limbische Prozesse dominieren. Zusammenfassend bestätigen die Ergebnisse die Bedeutung funktioneller Netzwerke in der spezifischen Phobie, wobei die gefundenen Konnektivitätsmuster einen intermediären Phänotyp darstellen könnten, der möglicherweise das Risiko für das Auftreten dysfunktionaler phobischer Angstreaktionen vermittelt. Von klinischem Interesse ist vor allem die Amygdala – ACC-Vernetzung, die als prädiktiver Biomarker für das Therapieansprechen genutzt oder im Rahmen neuromodulatorischer Therapieansätze wie dem Neurofeedback oder der repetitiven transkraniellen Magnetstimulation gezielt angesteuert werden könnte. KW - Kernspintomografie KW - Psychiatrie KW - Phobie KW - fMRT KW - Funktionelle Konnektivität KW - Spezifische Phobien KW - fMRI KW - Functional Connectivity KW - Specific Phobia KW - Neuroimaging KW - Dental Phobia KW - Zahnbehandlungsphobie KW - Angstverarbeitung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180950 ER - TY - THES A1 - Mendes Pereira, Lenon T1 - Morphological and Functional Ultrashort Echo Time (UTE) Magnetic Resonance Imaging of the Human Lung T1 - Morphologische und funktionelle Magnetresonanztomographie der menschlichen Lunge mit ultrakurzen Echozeiten (UTE) N2 - In this thesis, a 3D Ultrashort echo time (3D-UTE) sequence was introduced in the Self-gated Non-Contrast-Enhanced Functional Lung Imaging (SENCEFUL) framework. The sequence was developed and implemented on a 3 Tesla MR scanner. The 3D-UTE technique consisted of a nonselective RF pulse followed by a koosh ball quasi-random sampling order of the k-space. Measurements in free-breathing and without contrast agent were performed in healthy subjects and a patient with lung cancer. A gating technique, using a combination of different coils with high signal correlation, was evaluated in-vivo and compared with a manual approach of coil selection. The gating signal offered an estimation of the breathing motion during measurement and was used as a reference to segment the acquired data into different breathing phases. Gradient delays and trajectory errors were corrected during post-processing using the Gradient Impulse Response Function. Iterative SENSE was then applied to determine the fully sampled data. In order to eliminate signal changes caused by motion, a 3D image registration was employed, and the results were compared to a 2D image registration method. Ventilation was assessed in 3D and regionally quantified by monitoring the signal changes in the lung parenchyma. Finally, image quality and quantitative ventilation values were compared to the standard 2D-SENCEFUL technique. 3D-UTE, combined with an automatic gating technique and SENCEFUL MRI, offered ventilation maps with high spatial resolution and SNR. Compared to the 2D method, UTE-SENCEFUL greatly improved the clinical quality of the structural images and the visualization of the lung parenchyma. Through‐plane motion, partial volume effects and ventilation artifacts were also reduced with a three-dimensional method for image registration. UTE-SENCEFUL was also able to quantify regional ventilation and presented similar results to previous studies. N2 - In dieser Arbeit wurde eine 3D-UTE (ultrashort echo time) Sequenz mit SENCEFUL-MRI kombiniert. Die Sequenz wurde für einen 3 T MR-Scanner entwickelt und implementiert. Die 3D-UTE-Technik bestand aus einem nichtselektiven HF- Impuls, gefolgt von einer quasi-zufälligen Abtastung des k-Raums. Messungen in freier Atmung und ohne Kontrastmittel wurden bei gesunden Probanden und einem Patienten mit Lungenkrebs durchgeführt. Zur Zuordnung der Daten zu verschiedene Atemphasen wurde eine Technik verwendet, die verschiedene Spulen mit hoher Signalkorrelation kombiniert. Die Ergebnisse wurden in einer in-vivo Messung bewertet und mit einem manuellen Ansatz der Spulenselektion verglichen. Die Technik ermöglichte eine Visualisierung der Atembewegung und wurde als Referenz verwendet, um die erfassten Daten in mehrere Atemphasen zu segmentieren. Gradientenverzögerungen und Trajektorienfehler wurden mit der "Gradient Impulse Response Function - GIRF" korrigiert. Bei der Bildrekonstruktion kam Iteratives SENSE zum Einsatz. Eine 3D-Bildregistrierung erlaubte es, Signaländerungen durch Bewegung zu eliminieren. Es erfolgte ein Vergleich der Ergebnisse mit einem 2D- Bildregistrierungsverfahren. Die Lungenventilation wurde in 3D gemessen und anhand der Signaländerungen im Lungenparenchym quantifiziert. Schließlich, wurden die Werte für die Bildqualität und Lungenventilation mit der Standard-2D-SENCEFUL-Technik verglichen. Die 3D-UTE-Sequenz in Kombination mit einer automatischen Gating-Technik und SENCEFUL-MRI, ermöglichte die Akquise von Ventilationskarten mit hoher räumlicher Auflösung und SNR. Im Vergleich zur 2D-Methode, verbesserte UTE- SENCEFUL die klinische Qualität der Morphologischen Bilder. Bewegung, Partialvolumeneffekte und Ventilationsartefakte wurden ebenfalls mit einer dreidimensionalen Methode zur Bildregistrierung reduziert. Insgesamt konnten mit der 3D-UTE Technik die Ergebnisse vorangegangener Studien reproduziert und die Bildqualität verbessert werden. KW - Kernspintomografie KW - Lunge KW - MRI KW - Ultrashort echo time - UTE KW - Magnetic Resonance Imaging KW - Lung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-183176 ER - TY - THES A1 - Ponce Garcia, Irene Paola T1 - Strategies for optimizing dynamic MRI T1 - Strategien zur Optimierung der dynamischen MR Bildgebung N2 - In Magnetic Resonance Imaging (MRI), acquisition of dynamic data may be highly complex due to rapid changes occurred in the object to be imaged. For clinical diagnostic, dynamic MR images require both high spatial and temporal resolution. The speed in the acquisition is a crucial factor to capture optimally dynamics of the objects to obtain accurate diagnosis. In the 90’s, partially parallel MRI (pMRI) has been introduced to shorten scan times reducing the amount of acquired data. These approaches use multi-receiver coil arrays to acquire independently and simultaneously the data. Reduction in the amount of acquired data results in images with aliasing artifacts. Dedicated methods as such Sensitivity Encoding (SENSE) and Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) were the basis of a series of algorithms in pMRI. Nevertheless, pMRI methods require extra spatial or temporal information in order to optimally reconstruct the data. This information is typically obtained by an extra scan or embedded in the accelerated acquisition applying a variable density acquisition scheme. In this work, we were able to reduce or totally eliminate the acquisition of the training data for kt-SENSE and kt-PCA algorithms obtaining accurate reconstructions with high temporal fidelity. For dynamic data acquired in an interleaved fashion, the temporal average of accelerated data can generate an artifact-free image used to estimate the coil sensitivity maps avoiding the need of extra acquisitions. However, this temporal average contains errors from aliased components, which may lead to signal nulls along the spectra of reconstructions when methods like kt-SENSE are applied. The use of a GRAPPA filter applied to the temporal average reduces these errors and subsequently may reduce the null components in the reconstructed data. In this thesis the effect of using temporal averages from radial data was investigated. Non-periodic artifacts performed by undersampling radial data allow a more accurate estimation of the true temporal average and thereby avoiding undesirable temporal filtering in the reconstructed images. kt-SENSE exploits not only spatial coil sensitivity variations but also makes use of spatio-temporal correlations in order to separate the aliased signals. Spatio-temporal correlations in kt-SENSE are learnt using a training data set, which consists of several central k-space lines acquired in a separate scan. The scan of these extra lines results in longer acquisition times even for low resolution images. It was demonstrate that limited spatial resolution of training data set may lead to temporal filtering effects (or temporal blurring) in the reconstructed data. In this thesis, the auto-calibration for kt-SENSE was proposed and its feasibility was tested in order to completely eliminate the acquisition of training data. The application of a prior TSENSE reconstruction produces the training data set for the kt-SENSE algorithm. These training data have full spatial resolution. Furthermore, it was demonstrated that the proposed auto-calibrating method reduces significantly temporal filtering in the reconstructed images compared to conventional kt-SENSE reconstructions employing low resolution training images. However, the performance of auto-calibrating kt-SENSE is affected by the Signal-to-Noise Ratio (SNR) of the first pass reconstructions that propagates to the final reconstructions. Another dedicated method used in dynamic MRI applications is kt-PCA, that was first proposed for the reconstruction of MR cardiac data. In this thesis, kt-PCA was employed for the generation of spatially resolved M0, T1 and T2 maps from a single accelerated IRTrueFISP or IR-Snapshot FLASH measurement. In contrast to cardiac dynamic data, MR relaxometry experiments exhibit signal at all temporal frequencies, which makes their reconstruction more challenging. However, since relaxometry measurements can be represented by only few parameters, the use of few principal components (PC) in the kt-PCA algorithm can significantly simplify the reconstruction. Furthermore, it was found that due to high redundancy in relaxometry data, PCA can efficiently extract the required information from just a single line of training data. It has been demonstrated in this thesis that auto-calibrating kt-SENSE is able to obtain high temporal fidelity dynamic cardiac reconstructions from moderate accelerated data avoiding the extra acquisition of training data. Additionally, kt-PCA has been proved to be a suitable method for the reconstruction of highly accelerated MR relaxometry data. Furthermore, a single central training line is necessary to obtain accurate reconstructions. Both reconstruction methods are promising for the optimization of training data acquisition and seem to be feasible for several clinical applications. N2 - Dynamische Bildgebung mithilfe der Magnetresonanztomographie stellt eine besondere Herausforderung dar. Für klinische Anwendungen benötigt man Bilder mit hoher räumlicher und bei schnellen Bewegungen auch zeitlicher Auflösung. Technologische Fortschritte in den letzten Jahrzehnten konnten MRT-Experimente erheblich beschleunigen. Ein wichtiger Beitrag lieferte die parallele Bildgebung (pMRT), die durch die Entwicklung von Spulenarrays für den Empfang des MR-Signals ermöglicht wurde. In paralleler Bildgebung wird nur ein Teil der eigentlich benötigten Daten aufgenommen. Diese Unterabtastung des k-Raum führt zu Bildern mit Aliasing-Artefakten. Verschiedenste Algorithmen wurden entwickelt, um mittels der zusätzlichen räumlichen Informationen der Spulenarrays anschließend Bilder zu rekonstruieren. Heute spielen Sensitivity Encoding (SENSE) und Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) eine große und bilden eine Grundlage für eine Vielzahl anderer Algorithmen. Einen Großteil aller pMRT Methoden erfordern für optimale Ergebnisse zusätzliche räumliche oder zeitliche Informationen zur Kalibrierung. Diese Kalibrations- oder Trainingsdaten werden in der Regel durch einen zusätzlichen Scan erzeugt oder in die beschleunigte Messung eingebettet aufgenommen. Das ist eine unerwünschte Verlängerung der Messzeit die Folge. In dieser Arbeit konnten wir kt-SENSE und kt-PCA Rekonstruktionen dynamischer MRT Daten mit hoher zeitlicher Genauigkeit erzielen bei gleichzeitiger Reduktion bzw. sogar Beseitigung der benötigten Menge an Trainingsdaten. Um die in beiden Methoden benötigten Spulensensitivitäten zu berechnen, kann bei bestimmten Abtastschemata mit dem Mittelwert der dynamischen Daten ein weitgehend Artefakt-freies Bild erzeugt werden. Dieser zeitliche Mittelwert enthält jedoch kleine Fehler, die durch die Anwendung von Methoden wie kt-SENSE zu Signalauslöschungen im Spektrum der rekonstruierten Daten führen können. Es konnte gezeigt werden, dass die Anwendung eines GRAPPA Filter auf den zeitlichen Mittelwert die Fehler in den Spulensensitivitäten reduziert und die Rekonstruktion von Daten aller Frequenzen ermöglicht. Eine weitere aufgezeigte Möglichkeit ist die Verwendung einer radialen Akquisition, die dank der inkohärenten Aliasing-Artefakte ebenfalls zu einer erheblich genaueren Abschätzung des zeitlichen Mittelwerts führt. Dies verhindert zeitliche Ungenauigkeiten in den rekonstruierten Bildern. Zusätzliche zu Spulensensitivitäten verwenden Rekonstruktionsmethoden wie kt-SENSE Vorkenntnisse über räumlich-zeitliche Korrelationen, um Artefakte zu entfernen. Informationen darüber werden gewöhnlich aus voll aufgenommenen Trainingsdaten mit geringer Auflösung extrahiert. Die separate Akquisitions dieser Trainingsdaten verursacht eine unerwünschte Verlängerung der Messzeit. In dieser Arbeit wurde gezeigt, dass die niedrige Auflösung der Trainingsdaten zu zeitlichen Filterungseffekten in den rekonstruierten Daten führen kann. Um dies zu verhindern und um die zusätzliche Aufnahme von Trainingsdaten zu vermeiden, wurde eine Autokalibrierung für kt-SENSE vorgeschlagen und untersucht. Hierbei werden die benötigten Trainingsdaten in einem ersten Schritt durch eine TSENSE Rekonstruktion aus den unterabgetasteten Daten selbst erzeugt. Dank der vollen Auflösung dieser Trainingsdaten kann das Auftreten eines zeitlichen Filters verhindert werden. Die Leistung der Auto-kalibration wird lediglich durch einen Einfluss des SNRs der TSENSE Trainingsdaten auf die finalen Rekonstruktionen beeinträchtigt. Ein weiteres Verfahren für die dynamische MRT ist kt-PCA, das zunächst für die Rekonstruktion von MR-Herzdaten vorgeschlagen wurde. In dieser Arbeit wurde kt-PCA für die neurologische MR Relaxometrie verwendet. Hierbei konnten aus beschleunigten IRTrueFISP und IR-Snapshot-FLASH Messungen genaue M0, T1 und T2 Karten gewonnen werden. Im Gegensatz zur Herzbildgebung weisen MR Relaxometrie Datensätze Signal auf alles zeitlichen Frequenzen auf, was ihre Rekonstruktion mit konventionellen Methoden erschwert. Andererseits können die zeitlichen Signalverläufe mit einigen wenigen Parametern dargestellt werden und die Rekonstruktion mittels kt-PCA vereinfacht sich erheblich aufgrund der geringen Anzahl benötigter Hauptkomponenten (PC). Weiter wurde gezeigt, dass aufgrund der hohen Redundanz ein Trainingsdatensatz bestehend aus einer einzigen Zeile ausreicht, um alle relevanten Informationen zu erhalten. In dieser Thesis wurde demonstriert, dass mit dem Ansatz einer auto-kalibrierten kt-SENSE Rekonstruktion Bilder mit hoher zeitlicher Genauigkeit aus beschleunigten Datensätzen des Herzens gewonnen werden können. Dies vermeidet die gewöhnlich benötigte zusätzliche Aufnahme von Trainingsdaten. Weiterhin hat sich kt-PCA als geeignetes Verfahren zur Rekonstruktion hochbeschleunigter MR Relaxometrie Datensätze erwiesen. In diesem Fall war ein Trainingsdatensatz bestehend aus einer einzelnen Zeile ausreichend für Ergebnisse mit hoher Genauigkeit. KW - Kernspintomografie KW - Dynamische Messung KW - Magnetic resonance KW - Magnetische Resonanz KW - Dynamic magnetic resonance imaging KW - Dynamische MR Bildgebung KW - DNMR-Spektroskopie KW - Bildgebendes Verfahren Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162622 ER - TY - THES A1 - Munz, Eberhard T1 - Physiological and metabolical high-resolution MRI of plants T1 - Physiologische und metabolische hochaufgelöste Pflanzen-Magnetresonanzbildgebung N2 - The noninvasive magnetic resonance imaging technique allows for the investigation of functional processes in the living plant. For this purpose during this work, different NMR imaging methods were further developed and applied. For the localisation of the intrusion of water into the germinating rape seed with the simultaneous depiction of the lipid-rich tissue via a 3D rendering, in Chap. 5 the technique of interleaved chemical selective acquisition of water and lipid was used in the germinating seed. The utilization of high-resolution MR images of germinated seeds enabled the localization of a predetermined water gap in the lipid-rich aleurone layer, which resides directly under the seed coat. The for a long time in biology prevalent discussion, whether such a gap exists or the seed soaks up the water from all sides, rather like a sponge, could hereby, at least for the rapeseed seed, be answered clearly. Furthermore, the segmentation and 3D visualization of the vascular tissue in the rapeseed seeds was enabled by the high-resolution datasets, a multiply branched structure preconstructed in the seed could be shown. The water is directed by the vascular tissue and thus awakens the seed gradually to life. This re-awakening could as well be tracked by means of invasive imaging via an oxygen sensor. In the re-awakened seeds, the lipid degradation starts, other than expected, not in the lipid-rich cotyledons but in the residual endosperm remaining from seed development and in the aleurone layer which previously protected the embryo. Within this layer, the degradation could be verified in the high-resolution MR datasets. The method presented in Chap. 6 provides a further characteristic trait for phenotyping of seeds and lipid containing plants in general. The visualization of the compounds of fatty acids in plant seeds and fruits could be achieved by the distinct utilization of chemical shift-selective imaging techniques. Via the application of a CSI sequence the fatty acid compounds in an olive were localized in a 2D slice. In conjunction with an individually adjusted CHESS presaturation module Haa85 the high-resolution 3D visualization of saturated and unsaturated fatty acid compounds in different seeds was achieved. The ratio maps calculated from these datasets allow to draw conclusions from the developmental stage or the type of seed. Furthermore, it could be shown that the storage condition of two soybean seeds with different storage time durations lead to no degradation of the fatty acid content. Additional structural information from inside of dry seeds are now accessible via MRI. In this work the imaging of cereal seeds could be significantly improved by the application of the UTE sequence. The hitherto existing depictions of the lipid distribution, acquired with the spin echo sequence, were always sufficient for examinations of the lipid content, yet defects in the starchy endosperm or differences in the starch concentration within the seed remained constantly unseen with this technique. In a direct comparison of the datasets acquired with the previous imaging technique (spin echo) and with UTE imaging, the advantage of data acquisition with UTE could be shown. By investigating the potential seed compounds (starch, proteins, sugar) in pure form, the constituent parts contributing to the signal could be identified as bound water (residual moisture) and starch. The application of a bi-exponential fit on the datasets of the barley seed enabled the separate mapping of magnetization and of relaxation time of two components contributing to the NMR signal. The direct comparison with histological stainings verified the previous results, thus this technique can be used for the selective imaging of starch in dry seeds. Conclusions on the translocation characteristics in plants can be drawn by the technique proposed in Chap. 8. The associated translocation velocities can now, even in the range of several um/h, be determined in the living plant. Based on calculated concentrations of an MR contrast agent, which was taken up by the plant, these translocation velocities were estimated both in longitudinal direction, thus along the vascular bundle, and in horizontal direction, thus out of the bundle. The latter velocity is located below the contrast agent's velocity value of free diffusion. By adjusting a dynamic contrast-enhancing imaging technique (DCE-Imaging, Tof91) the acquisition duration of a T1-map was significantly reduced. By means of these maps, local concentrations of the contrast agent in plant stems and the siliques of the rapeseed plant could be determined. Numerous questions in plant science can only be answered by non-invasive techniques such as MRI. For this reason, besides the experimental results achieved in this work, further NMR methods were tested and provided for the investigation of plants. As an example, the study on the imaging of magnetic exchange processes are mentioned, which provided the groundwork for a possible transfer of CEST experiments (Chemical Exchange Saturation Transfer) to the plant. The results are presented in the bachelor thesis of A. Jäger Jae17, which was performed under my supervision, they find great interest under biologists. The development of new technologies, which extend the possibilities for the investigation of living organisms, is of great importance. For this reason, I have contributed to the development of the currently unpublished method RACETE (Refocused Acquisition of Chemical Exchange Transferred Excitations [Jak17, Reu17, Gut18a]). By rephasing the transferred magnetization the utilization of properties which have not been available in chemical "`exchange"' experiments is enabled. With this method a positive contrast is generated, thus a reference experiment is not mandatory. Furthermore, the image phase, which in classical experiments contains no information about the exchanged protons, can be used for the distinct identification of multiple substances which have been excited simultaneously. This recently at the Department of Experimental Physics V developed method can be used in particular for the identification of lipids and for the localization of sugars and amino acids, thus it can serve the enhancement and improvement of non-invasive analytical methods. N2 - Die nicht-invasive Bildgebungstechnik der Magnetresonanz ermöglicht es, funktionelle Prozesse in Pflanzen am lebenden Objekt zu untersuchen. Hierfür wurden im Rahmen dieser Arbeit verschiedene NMR-Bildgebungsmethoden weiterentwickelt und angewendet. Da Pflanzen ein magnetisch sehr inhomogenes Gewebe besitzen, bedingt durch Lufteinschlüsse und das Vorhandensein verschiedenster gelöster Stoffe im Pflanzengewebe, wurden daher hauptsächlich Spin-Echo-Methoden für die Bildgebung verwendet. Um das erste Eindringen des Wassers in den keimenden Raps-Samen bei gleichzeitiger Darstellung des lipid-reichen Gewebes mittels einer 3D-Visualisierung zu lokalisieren, wurde in Kapitel 5 die Technik der verschachtelten, chemisch selektiven Aufnahme von Wasser und Lipid im keimenden Samen verwendet. Durch Verwendung von hochausgelösten MR-Aufnahmen an gekeimten Samen konnte weiterhin in der lipid-reichen Aleuron-Schicht, die sich direkt unter der Samenschale befindet, ein gezielt angelegter Einlass für das Wasser verortet werden. Die in der Biologie lange Zeit verbreitete Diskussion, ob es einen solchen Einlass gibt oder der keimende Samen das Wasser eher wie ein Schwamm von allen Seiten aufsaugt, konnte hierdurch, zumindest für den Raps-Samen, eindeutig beantwortet werden. Weiterhin konnte durch die hoch-aufgelösten Aufnahmen das vaskuläre Gewebe in den Raps-Samen segmentiert und in 3D veranschaulicht werden, es zeigte sich eine mehrfach verzweigte Struktur, die bereits im Samen angelegt ist. Das Wasser folgt hierbei dem vaskulären Gewebe und erweckt hierdurch den Samen schrittweise zum Leben. Dieses Wieder-Erwachen konnte ebenfalls durch die invasive Bildgebung mittels eines Sauerstoff-Sensors nachverfolgt werden. Im nun erwachten Samen selbst beginnt der Lipid-Abbau, anders als zunächst angenommen, nicht in den lipid-haltigen Kotyledonen sondern im von der Samen-Entwicklung verbliebenden Endosperm und in der den Keimling vormals schützenden Aleuron-Schicht. In dieser konnte der Abbau an gekeimten Samen durch hochaufgelöste MR-Aufnahmen nachgewiesen werden. Die in Kapitel 6 vorgeschlagene Methode liefert ein weiteres Merkmal zur Phenotypisiserung von Samen und lipidhaltigen Pflanzenbestandteilen im Allgemeinen. Die Darstellung der Bestandteile ungesättigter Fettsäuren in Pflanzensamen und -Früchten konnte durch gezielte Verwendung von chemisch selektiven Bildgebungstechniken erreicht werden. Durch die Anwendung einer CSI-Sequenz konnten die Fettsäurebestandteile in Oliven in einer 2D-Schicht lokalisiert werden. In Verbindung mit einem jeweils angepassten CHESS-Vorsättigungsmodul Haa85 wurde die hochaufgelöste 3D-Darstellung von gesättigten und ungesättigten Fettsäurebestandteilen in unterschiedlichen Samen erreicht. Rückschlüsse über das Entwicklungsstadium sowie die Sorte der verwendeten Samen können aus den Verhältnis-Karten, die aus den jeweiligen Datensätzen berechnet wurden, gezogen werden. Dass in diesem Fall die Aufbewahrungsmethode zu keiner Degradation der Fettsäurezusammensetzung geführt hat, konnte weiterhin am Beispiel von zwei Sojasamen mit unterschiedlicher Lagerdauer gezeigt werden. Zusätzliche strukturelle Informationen aus dem Inneren trockener Samen sind nun mittels MRT zugänglich. In dieser Arbeit konnte durch die UTE-Sequenz die Bildgebung von Getreidesamen deutlich vorangebracht werden. Die bisherigen Darstellungen der Lipid-Verteilung, aufgenommen mit einer Spin-Echo Sequenz, waren zwar für die Betrachtung des Lipid-Gehalts stets ausreichend, Defekte im stärkehaltigen Endosperm oder Unterschiede in der Stärke-Konzentration innerhalb des Samen blieben mit dieser Technik jedoch stets verborgen. Im direkten Vergleich der mit der bisherigen Technik (Spin-Echo) und der UTE-Bildgebung aufgenommenen Datensätze konnte der Vorteil der Datenaufnahme mit UTE gezeigt werden. Durch die Untersuchung der möglichen Samenbestandteile (Stärke, Proteine, Zucker) in Reinform konnten die zum Signal beitragen Bestandteile als gebundenes Wasser (Restfeuchte) und Stärke identifiziert werden. Die Verwendung bi-exponentiellen Fits and die Messdaten ermöglichte es im Gersten-Samen, zwei zum Signal beitragende Komponenten in getrennten Karten bezüglich ihrer Magnetisierung und Relaxationszeit zu trennen. Der Vergleich mit histologischen Färbungen bestätigte die bisherigen Ergebnisse, somit kann diese Technik zur selektiven Darstellung von Stärke in trockenen Samen verwendet werden. Rückschlüsse auf das Transportverhalten in Pflanzen können durch die in Kapitel 8 vorgestellte Technik gezogen werden. Die zugehörigen Transportgeschwindigkeiten im lebenden Pflanzenobjekt können nun, selbst im Bereich von wenigen $\mu$m/h, bestimmt werden. Diese wurden anhand von berechneten Konzentrationen eines von der Pflanze aufgenommenen MR-Kontrastmittels sowohl in longitudinaler Richtung, also entlang des Leitgewebebündels, als auch in horizontaler Richtung, also aus dem Leitbündel heraus, abgeschätzt werden; Letztere Geschwindigkeit liegt deutlich unter dem Wert der freien Diffusionsgeschwindigkeit des Kontrastmittels. Hierfür wurden durch Anpassung einer dynamischen Kontrast-erhöhenden Bildgebungstechnik (DCE-Imaging, Tof91) die Aufnahmedauer einer für die weiteren Berechnungen benötigen T1-Karte deutlich reduziert. Mittels dieser Karten konnten die lokalen Konzentrationen des Kontrastmittels in Pflanzenstängeln und Schoten der Rapspflanze bestimmt werden. Zahlreiche Fragen in der Pflanzenforschung können nur durch nicht-invasive Techniken wie MRT beantwortet werden. Deswegen wurden, neben den experimentellen Ergebnissen, die mittels dieser Arbeit erreicht wurden, auch weitere NMR Methoden für die Untersuchung von Pflanzen getestet und zur Verfügung gestellt. Als Beispiel seien hier die Untersuchungen zur Bildgebung von magnetischen Austauschprozessen genannt, welche eine Vorarbeit zur möglichen Übertragung con CEST-Experimenten (Chemical Exchange Saturation Transfer) auf das Modell Pflanze liefern. Die Ergebnisse sind in der Bachelor-Arbeit von A. Jäger \cite{jaeger17}, an deren Durchführung ich als Betreuer maßgeblich beteiligt war, dargestellt und finden großes Interesse bei Biologen. Von besonderer Wichtigkeit sind auch die Entwicklungen neuer Technologien, die die Möglichkeiten zur Untersuchung von lebenden Organismen erweitern können. Deswegen habe ich zu der Entwicklung der bislang unveröffentlichten Methode RACETE (Refocused Acquisition of Chemical Exchange Transferred Excitations [Jak17, Reu17, Gut18a]) beigetragen. Durch das Rephasieren der transferierten Magnetisierung können Eigenschaften, die bislang in chemischen "`Austausch"'-Experimenten nicht zur Verfügung stehen, ausgenutzt werden. Mit dieser Methode wird ein positiver Kontrast erzeugt, sie ist deshalb nicht zwingend auf ein Referenz-Experiment angewiesen. Weiterhin kann die Bildphase, welche in klassichen CEST-Experimenten keine Information über die ausgetauschten Protonen enthält, zur eindeutigen Identifizierung mehrerer parallel angeregter Substanzen verwendet werden. KW - Kernspintomografie KW - Pflanzen KW - Pflanzenbildgebung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172518 ER - TY - THES A1 - Slawig, Anne T1 - Reconstruction methods for the frequency-modulated balanced steady-state free precession MRI-sequence T1 - Rekonstruktionsmethoden für die frequenz-modulierte balanced steady-state free precession MRT-Sequenz N2 - This work considered the frequency-modulated balanced steady-state free precession (fm-bSSFP) sequence as a tool to provide banding free bSSFP MR images. The sequence was implemented and successfully applied to suppress bandings in various in vitro and in vivo examples. In combination with a radial trajectory it is a promising alternative for standard bSSFP applications. First, two specialized applications were shown to establish the benefits of the acquisition strategy in itself. In real time cardiac imaging, it was shown that the continuous shift in frequency causes a movement of the bandings across the FOV. Thus, no anatomical region is constantly impaired, and a suitable timeframe can be found to examine all important structures. Furthermore, a combination of images with different artifact positions, similar to phase-cycled acquisitions is possible. In this way, fast, banding-free imaging of the moving heart was realized. Second, acquisitions with long TR were shown. While standard bSSFP suffers from increasing incidence of bandings with higher TR values, the frequency-modulated approach provided banding free images, regardless of the TR. A huge disadvantage of fm-bSSFP, in combination with the radial trajectory, is the decrease in signal intensity. In this work a specialized reconstruction method, the multifrequency reconstruction for frequency-modulated bSSFP (Muffm), was established, which successfully compensated that phenomena. The application of Muffm to several anatomical sites, such as inner ear, legs and cardiac acquisitions, proofed the advantageous SNR of the reconstruction. Furthermore, fm-bSSFP was applied to the clinically highly relevant task of water-fat separation. Former approaches of a phase-sensitive separation procedure in combination with standard bSSFP showed promising results but failed in cases of high inhomogeneity or high field strengths where banding artifacts become a major issue. The novel approach of using the fm-bSSFP acquisition strategy with the separation approach provided robust, reliable images of high quality. Again, losses in signal intensity could be regained by Muffm, as both approaches are completely compatible. Opposed to conventional banding suppression techniques, like frequency-scouts or phase-cycling, all reconstruction methods established in this work rely on a single radial acquisition, with scan times similar to standard bSSFP scans. No prolonged measurement times occur and patient time in the scanner is kept as short as possible, improving patient comfort, susceptibility to motion or physiological noise and cost of one scan. All in all, the frequency-modulated acquisition in combination with specializes reconstruction methods, leads to a completely new quality of images with short acquisition times. N2 - In dieser Arbeit wird eine Modifikation der balanced steady-state free precession (bSSFP) Sequenz betrachtet. Die frequenzmodulierte bSSFP-Sequenz (fm-bSSFP) kann die sonst typischen Band-Artefakte in bSSFP-MR-Bildern verhindern. Die Sequenz wurde im Rahmen der Arbeit am MR-Scanner implementiert und erfolgreich in verschiedenen in-vitro- und in-vivo-Beispielen angewendet. In Kombination mit einer radialen Trajektorie erwies es sich als eine vielversprechende Alternative für alle Standard-bSSFP Anwendungen. Zuerst wurden zwei spezialisierte Anwendungen gezeigt, um die Vorteile der Akquisitionsstrategie an sich darzustellen. Am Beispiel der Echtzeit-Herzbildgebung konnte mit Hilfe der kontinuierlichen Frequenzverschiebung eine Bewegung der Bänder über das FOV erzeugt werden. Somit wird keine anatomische Region ständig von Artefakten überlagert und für jeden Bereich kann ein geeigneter Zeitrahmen gefunden werden, um die wichtigen Strukturen darzustellen und zu untersuchen. Darüber hinaus ist eine Kombination von Bildern mit verschiedenen Artefaktpositionen möglich, ähnlich zu mehreren Aufnahmen mit verschiedenen Phasenzyklen. Auf diese Weise wurde eine schnelle Bildgebung des sich bewegenden Herzens ohne Bandartefakte realisiert. Zusätzlich wurden Aufnahmen mit langen Repetitionszeiten (TR) untersucht. Während in der Standard-bSSFP die Häufigkeit von Bandartefakten mit steigendem TR-Wert zunimmt, lieferte der frequenzmodulierte Ansatz Banding-freie Bilder unabhängig vom TR. Ein großer Nachteil von fm-bSSFP in Kombination mit der radialen Trajektorie ist der Verlust von Signalintensität bei der Rekonstruktion. In dieser Arbeit wurde eine spezielle Rekonstruktionsmethode namens Muffm (mulitfrequency reconstruction for frequency-modulated bSSFP) etabliert, die diesen Verlust erfolgreich kompensieren kann. Die Anwendung von Muffm an verschiedenen anatomischen Strukturen, wie Innenohr, Bein und Herzaufnahmen, bestätigte das vorteilhafte Signal-zu-Rausch-Verhältnis, dass durch die spezielle Rekonstruktion gewonnen werden kann. Darüber hinaus wurde die fm-bSSFP auf die klinisch interessante Wasser-Fett-Trennung angewandt. Frühere Ansätze eines phasenempfindlichen Trennverfahrens in Kombination mit Standard-bSSFP zeigten vielversprechende Ergebnisse, scheiterten jedoch in Fällen hoher Inhomogenität oder hoher Feldstärken an den auftretenden Bandartefakten. Der neue Ansatz, diesen Separationsalgorithmus mit der fm-bSSFP-Akquisitionsstrategie zu verbinden, lieferte robuste, zuverlässige Bilder von hoher Qualität. Auch hier konnten entstehende Verluste in der Signalintensität durch Muffm zurückgewonnen werden, da beide Ansätze vollständig kompatibel sind. Im Gegensatz zu herkömmlichen Bandunterdrückungstechniken, wie Frequenz-Scouts oder die Aufnahme mehrerer Bilder mit verschiedenen Phasenzyklen, beruhen alle in dieser Arbeit etablierten Rekonstruktionsverfahren auf einer einzigen radialen Aufnahme. Die Messzeiten sind daher identisch zur Aufnahme einer Standard-bSSFP Messung. Das Verfahren ermöglicht eine deutliche Verkürzung der Aufenthaltsdauer im Scanner bei einer gleichzeitigen Garantie ein artefaktfreies Bild zu erhalten. Damit ist es insbesondere für Patienten von Vorteil, die unter Platzangst oder sonstigen Beschwerden leiden, die ein langes Stillliegen erschweren. Außerdem werden Bewegungsartefakte, physiologisches Rauschen und nicht zuletzt die Kosten eines Scans minimiert. Insgesamt bietet die frequenzmodulierte bSSFP Aufnahme in Kombination mit spezialisierten Rekonstruktionsverfahren neue Möglichkeiten zur schnellen Aufnahme von Bildern ohne Bandartefakte. KW - Kernspintomografie KW - Magnetic resonance imaging KW - MRI KW - MRT KW - bSSFP KW - Rekonstruktion KW - reconstruction KW - frequency modulation KW - water fat separation KW - Wasser Fett Trennung KW - balanced steady state free precession Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162871 ER - TY - THES A1 - Carinci, Flavio T1 - Quantitative Characterization of Lung Tissue Using Proton MRI T1 - Quantitative Charakterisierung des Lungengewebes mithilfe von Proton-MRT N2 - The focus of the work concerned the development of a series of MRI techniques that were specifically designed and optimized to obtain quantitative and spatially resolved information about characteristic parameters of the lung. Three image acquisition techniques were developed. Each of them allows to quantify a different parameter of relevant diagnostic interest for the lung, as further described below: 1) The blood volume fraction, which represents the amount of lung water in the intravascular compartment expressed as a fraction of the total lung water. This parameter is related to lung perfusion. 2) The magnetization relaxation time T\(_2\) und T� *\(_2\) , which represents the component of T\(_2\) associated with the diffusion of water molecules through the internal magnetic field gradients of the lung. Because the amplitude of these internal gradients is related to the alveolar size, T\(_2\) und T� *\(_2\) can be used to obtain information about the microstructure of the lung. 3) The broadening of the NMR spectral line of the lung. This parameter depends on lung inflation and on the concentration of oxygen in the alveoli. For this reason, the spectral line broadening can be regarded as a fingerprint for lung inflation; furthermore, in combination with oxygen enhancement, it provides a measure for lung ventilation. N2 - Die Magnetresonanztomographie (MRT) stellt ein einzigartiges Verfahren im Bereich der diagnostischen Bildgebung dar, da sie es ermöglicht, eine Vielzahl an diagnostischen Informationen ohne die Verwendung von ionisierenden Strahlen zu erhalten. Die Anwendung von MRT in der Lunge erlaubt es, räumlich aufgelöste Bildinformationen über Morphologie, Funktionalität sowie über die Mikrostruktur des Lungengewebes zu erhalten und diese miteinander zu kombinieren. Für die Diagnose und Charakterisierung von Lungenkrankheiten sind diese Informationen von höchstem Interesse. Die Lungenbildgebung stellt jedoch einen herausfordernden Bereich der MRT dar. Dies liegt in der niedrigen Protondichte des Lungenparenchyms begründet sowie in den relativ kurzen Transversal- Relaxationszeiten T\(_2\) und T� *\(_2\) , die sowohl die Bildau� ösung als auch das Signal-zu-Rausch Verhältnis beeinträchtigen. Des Weiteren benötigen die vielfältigen Ursachen von physiologischer Bewegung, welche die Atmung, den Herzschlag und den Blut� uss in den Lungengefasen umfassen, die Anwendung von schnellen sowie relativ bewegungsunemp� ndlichen Aufnahmeverfahren, um Risiken von Bildartefakten zu verringern. Aus diesen Gründen werden Computertomographie (CT) und Nuklearmedizin nach wie vor als Goldstandardverfahren gehandhabt, um räumlich aufgelöste Bildinformationen sowohl über die Morphologie als auch die Funktionalität der Lunge zu erhalten. Dennoch stellt die Lungen- MRT aufgrund ihrer Flexibilität sowohl eine vielversprechende Alternative zu den anderen Bildgebungsverfahren als auch eine mögliche Quelle zusätzlicher diagnostischer Informationen dar. ... KW - Lung KW - MRI KW - Kernspintomografie KW - Lunge Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151189 ER -