TY - INPR A1 - Reiss, Harald T1 - Time scales and existence of time holes in non-transparent media N2 - The analysis presented in this paper applies to experimental situations where observers or objects to be studied, all at stationary positions, are located in environments the optical thickness of which is strongly different. Non-transparent media comprise thin metallic films, packed or fluidised beds, superconductors, the Earth’s crust, and even dark clouds and other cosmological objects. The analysis applies mapping functions that correlate physical events, e, in non-transparent media, with their images, f(e), tentatively located on standard physical time scale. The analysis demonstrates, however, that physical time, in its rigorous sense, does not exist under non-transparency conditions. A proof of this conclusion is attempted in three steps: i) the theorem “there is no time without space and events” is accepted, (ii) images f[e(s,t)] do not constitute a dense, uncountably infinite set, and (iii) sets of images that are not uncountably infinite do not create physical time but only time-like sequences. As a consequence, mapping f[e(s,t)] in non-transparent space does not create physical analogues to the mathematical structure of the ordered, dense half-set R+ of real numbers, and reverse mapping, f-1f[e(s,t)], the mathematical inverse problem, would not allow unique identification and reconstruction of original events from their images. In these cases, causality as well as invariance of physical processes under time reversal, might be violated. An interesting problem is whether temporal cloaking (a time hole) in a transparent medium, as very recently reported in the literature, can be explained by the present analysis. Existence of time holes could perhaps be possible, not in transparent but in non-transparent media, as follows from the sequence of images, f[e(s,t)], that is not uncountably infinite, in contrast to R+. Impacts are expected for understanding physical diffusion-like, radiative transfer processes and stability models to protect superconductors against quenchs. There might be impacts also in relativity, quantum mechanics, nuclear decay, or in systems close to their phase transitions. The analysis is not restricted to objects of laboratory dimensions. KW - Zeitrichtung KW - Strahlungstransport KW - Supraleiter KW - Nicht-Transparente Medien KW - Physikalische Zeit KW - Inverse Probleme KW - Time hole KW - mapping function KW - Monte Carlo simulation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73554 N1 - Überarbeitung des Artikels urn:nbn:de:bvb:20-opus-67268 ER - TY - INPR A1 - Reiss, Harald T1 - Physical time and existence of time holes in non-transparent media N2 - The analysis presented in this paper applies to experimental situations where observers or objects to be studied (both stationary, with respect to each other) are located in environments the optical thickness of which is strongly different. By their large optical thickness, non-transparent media are clearly distinguished from their transparent counterparts. Non-transparent media comprise thin metallic films, packed or fluidised beds, the Earth’s crust, and even dark clouds and other cosmological objects. As a representative example, a non-transparent slab is subjected to transient disturbances, and a rigorous analysis is presented whether physical time reasonably could be constructed under such condition. The analysis incorporates mapping functions that correlate physical events, e, in non-transparent media, with their images, f(e), tentatively located on a standard physical time scale. The analysis demonstrates, however, that physical time, in its rigorous sense, does not exist under non-transparency conditions. A proof of this conclusion is attempted in three steps: i) the theorem “there is no time without space and events” is accepted, (ii) images f[e(s,t)] do not constitute a dense, uncountably infinite set, and (iii) sets of images that are not uncountably infinite do not create physical time but only time-like sequences. As a consequence, mapping f[e(s,t)] in non-transparent space does not create physical analogues to the mathematical structure of the ordered, dense half-set R+ of real numbers, and reverse mapping, f-1f[e(s,t)] would not allow unique identification and reconstruction of original events from their images. In these cases, causality and determinism, as well as invariance of physical processes under time reversal, might be violated. Existence of time holes could be possible, as follows from the sequence of images, f[e(s,t)], that is not uncountably infinite, in contrast to R+. Practical impacts are expected for understanding physical diffusion-like, radiative transfer processes, stability models to protect superconductors against quenchs or for description of their transient local pair density and critical currents. Impacts would be expected also in mathematical formulations (differential equations) of classical physics, in relativity and perhaps in quantum mechanics, all as far as transient processes in non-transparent space would be concerned. An interesting problem is whether temporal cloaking (a time hole) in a transparent medium, as very recently reported in the literature, can be explained by the present analysis. The analysis is not restricted to objects of laboratory dimensions: Because of obviously existing radiation transfer analogues, it is tempting to discuss consequences also for much larger structures in particular if an origin of time is postulated. KW - Strahlungstransport KW - Zeitrichtung KW - Supraleiter KW - Computersimulation KW - Non-transparency KW - disturbance KW - physical time KW - time hole Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67268 N1 - Von diesem Artikel gibt es eine überarbeitete Version unter urn:nbn:de:bvb:20-opus-73554. ER -