TY - JOUR A1 - Ankenbrand, Markus Johannes A1 - Lohr, David A1 - Schlötelburg, Wiebke A1 - Reiter, Theresa A1 - Wech, Tobias A1 - Schreiber, Laura Maria T1 - Deep learning-based cardiac cine segmentation: Transfer learning application to 7T ultrahigh-field MRI JF - Magnetic Resonance in Medicine N2 - Purpose Artificial neural networks show promising performance in automatic segmentation of cardiac MRI. However, training requires large amounts of annotated data and generalization to different vendors, field strengths, sequence parameters, and pathologies is limited. Transfer learning addresses this challenge, but specific recommendations regarding type and amount of data required is lacking. In this study, we assess data requirements for transfer learning to experimental cardiac MRI at 7T where the segmentation task can be challenging. In addition, we provide guidelines, tools, and annotated data to enable transfer learning approaches by other researchers and clinicians. Methods A publicly available segmentation model was used to annotate a publicly available data set. This labeled data set was subsequently used to train a neural network for segmentation of left ventricle and myocardium in cardiac cine MRI. The network is used as starting point for transfer learning to 7T cine data of healthy volunteers (n = 22; 7873 images) by updating the pre-trained weights. Structured and random data subsets of different sizes were used to systematically assess data requirements for successful transfer learning. Results Inconsistencies in the publically available data set were corrected, labels created, and a neural network trained. On 7T cardiac cine images the model pre-trained on public imaging data, acquired at 1.5T and 3T, achieved DICE\(_{LV}\) = 0.835 and DICE\(_{MY}\) = 0.670. Transfer learning using 7T cine data and ImageNet weight initialization improved model performance to DICE\(_{LV}\) = 0.900 and DICE\(_{MY}\) = 0.791. Using only end-systolic and end-diastolic images reduced training data by 90%, with no negative impact on segmentation performance (DICE\(_{LV}\) = 0.908, DICE\(_{MY}\) = 0.805). Conclusions This work demonstrates and quantifies the benefits of transfer learning for cardiac cine image segmentation. We provide practical guidelines for researchers planning transfer learning projects in cardiac MRI and make data, models, and code publicly available. KW - 7T KW - ultrahigh-field KW - transfer learning KW - segmentation KW - neural networks KW - deep learning KW - cardiac magnetic resonance KW - cardiac function Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257604 VL - 86 IS - 4 ER - TY - JOUR A1 - Ankenbrand, Markus J. A1 - Shainberg, Liliia A1 - Hock, Michael A1 - Lohr, David A1 - Schreiber, Laura M. T1 - Sensitivity analysis for interpretation of machine learning based segmentation models in cardiac MRI JF - BMC Medical Imaging N2 - Background Image segmentation is a common task in medical imaging e.g., for volumetry analysis in cardiac MRI. Artificial neural networks are used to automate this task with performance similar to manual operators. However, this performance is only achieved in the narrow tasks networks are trained on. Performance drops dramatically when data characteristics differ from the training set properties. Moreover, neural networks are commonly considered black boxes, because it is hard to understand how they make decisions and why they fail. Therefore, it is also hard to predict whether they will generalize and work well with new data. Here we present a generic method for segmentation model interpretation. Sensitivity analysis is an approach where model input is modified in a controlled manner and the effect of these modifications on the model output is evaluated. This method yields insights into the sensitivity of the model to these alterations and therefore to the importance of certain features on segmentation performance. Results We present an open-source Python library (misas), that facilitates the use of sensitivity analysis with arbitrary data and models. We show that this method is a suitable approach to answer practical questions regarding use and functionality of segmentation models. We demonstrate this in two case studies on cardiac magnetic resonance imaging. The first case study explores the suitability of a published network for use on a public dataset the network has not been trained on. The second case study demonstrates how sensitivity analysis can be used to evaluate the robustness of a newly trained model. Conclusions Sensitivity analysis is a useful tool for deep learning developers as well as users such as clinicians. It extends their toolbox, enabling and improving interpretability of segmentation models. Enhancing our understanding of neural networks through sensitivity analysis also assists in decision making. Although demonstrated only on cardiac magnetic resonance images this approach and software are much more broadly applicable. KW - deep learning KW - neural networks KW - cardiac magnetic resonance KW - sensitivity analysis KW - transformations KW - augmentation KW - segmentation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259169 VL - 21 IS - 1 ER -