TY - THES A1 - Gerhard, Felicitas Irene Veronika T1 - Controlling structural and magnetic properties of epitaxial NiMnSb for application in spin torque devices T1 - Anpassung der strukturellen und magnetischen Eigenschaften von epitaktischem NiMnSb in Hinsicht auf die Anwendung in Spin Drehmoment Bauteilen N2 - This thesis describes the epitaxial growth of the Half-Heusler alloy NiMnSb by molecular beam epitaxy. Its structural and magnetic properties are controlled by tuning the composition and the resulting small deviation from stoichiometry. The magnetic in-plane anisotropy depends on the Mn concentration of the sample and can be controlled in both strength and orientation. This control of the magnetic anisotropy allows for growing NiMnSb layers of a given thickness and magnetic properties as requested for the design of NiMnSb-based devices. The growth and characterization of NiMnSb-ZnTe-NiMnSb heterostructures is presented - such heterostructures form an all-NiMnSb based spin-valve and are a promising basis for spin torque devices. N2 - Diese Arbeit beschreibt das epitaktische Wachstum der Halb-Heusler Legierung NiMnSb mittels Molekularstrahl Epitaxie. Durch Abstimmen der Zusammensetzung und einer daraus folgenden geringen Abweichung der Stöchiometrie werden die strukturellen und magnetischen Eigenschaften gesteuert. Die magnetische Anisotropie hängt von der Mn Konzentration der Probe ab, wobei sowohl die Stärke als auch die Orientierung der Anisotropie angepasst werden kann. Die Kontrolle der magnetischen Anisotropie erlaubt das Wachstum von NiMnSb Schichten mit gegebener Dicke und magnetischen Eigenschaften, die für das Design von NiMnSb-basierten Bauteilen erforderlich sind. Das Wachstum und die Charakterisierung von NiMnSb-ZnTe-NiMnSb Heterostrukturen wird präsentiert - solche Heterostrukturen bilden ein rein NiMnSb-basiertes Spinventil und sind eine vielversprechende Basis für Spin Drehmoment Bauteile. KW - Nickelverbindungen KW - Manganverbindungen KW - Half Heusler alloy NiMnSb KW - molecular beam epitaxy KW - magnetic anisotropy KW - spin valve KW - spin torque device KW - Halb-Heusler Legierung NiMnSb KW - Molekularstrahl Epitaxie KW - Magnetische Anisotropie KW - Spinventil KW - Spindrehmoment Bauteil KW - Antimonverbindungen KW - Heterostruktur KW - Molekularstrahlepitaxie KW - Heuslersche Legierung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111690 ER - TY - THES A1 - Mark, Stefan T1 - A Magnetic Semiconductor based Non-Volatile Memory and Logic Element T1 - Ein auf magnetischen Halbleiter basierendes nicht-flüchtiges Speicher- und Logik-Element N2 - For the realization of a programmable logic device, or indeed any nanoscale device, we need a reliable method to probe the magnetization direction of local domains. For this purpose we extend investigations on the previously discovered tunneling anisotropic magneto resistance effect (TAMR) by scaling the pillar size from 100 µm down to 260 nm. We start in chapter 4 with a theoretical description of the TAMR effect and show experimental data of miniaturized pillars in chapter 5. With such small TAMR probes we are able to locally sense the magnetization on the 100 nm scale. Sub-micron TAMR and anisotropic magneto resistance (AMR) measurements of sub-millimeter areas show that the behavior of macroscopic (Ga,Mn)As regions is not that of a true macrospin, but rather an ensemble average of the behavior of many nearly identical macrospins. This shows that the magnetic anisotropies of the local regions are consistent with the behavior extracted from macroscopic characterization. A fully electrically controllable read-write memory device out the ferromagnetic semiconductor (Ga,Mn)As is presented in chapter 6. The structure consists of four nanobars which are connected to a circular center region. The first part of the chapter describes the lithography realization of the device. We make use of the sub-micron TAMR probes to read-out the magnetization state of a 650 nm central disk. Four 200 nm wide nanobars are connected to the central disk and serve as source and drain of a spin-polarized current. With the spin-polarized current we are able to switch the magnetization of the central disk by means of current induced switching. Injecting polarized holes with a spin angular momentum into a magnetic region changes the magnetization direction of the region due to the p-d exchange interaction between localized Mn spins and itinerant holes. The magnetization of the central disk can be controlled fully electrically and it can serve as one bit memory element as part of a logic device. In chapter 7 we discuss the domain wall resistance in (Ga,Mn)As. At the transition from nanobars to central disk we are able to generate 90° and 180° domain walls and measure their resistance. The results presented from chapter 5 to 7 combined with the preexisting ultracompact (Ga,Mn)As-based memory cell of ref. [Papp 07c] are the building blocks needed to realize a fully functioning programmable logic device. The work of ref. [Papp 07c] makes use of lithographically engineered strain relaxation to produce a structure comprised of two nanobars with mutually orthogonal uniaxial easy axes, connected by a narrow constriction. Measurements showed that the resistance of the constriction depends on the relative orientation of the magnetization in the two bars. The programmable logic device consists of two central disks connected by a small constriction. The magnetization of the two central disks are used as the input bits and the constriction serves as the output during the logic operation. The concept is introduced in the end of chapter 6 and as an example for a logic operation an XOR gate is presented. The functionality of the programmable logic scheme presented here can be straightforwardly extended to produce multipurpose functional elements, where the given geometry can be used as various different computational elements depending on the number of input bits and the chosen electrical addressing. The realization of such a programmable logic device is shown in chapter 8, where we see that the constriction indeed can serve as a output of the logic operation because its resistance is dependent on the relative magnetization state of both disks. Contrary to ref. [Papp 07c], where the individual magnetic elements connected to the constriction only have two non-volatile magnetic states, each disk in our scheme connected to the constriction has four non-volatile magnetic states. Switching the magnetization of a central disk with an electrical current does not only change the TAMR read-out of the respective disk, it also changes the resistance of the constriction. The resistance polar plot of the constriction maps the relative magnetization states of the individual disks. The presented device design serves as an all-electrical, all-semiconductor logic element. It combines a memory cell and data processing in a single monolithic paradigm. N2 - Für die Realisierung eines programmierbaren Logikelements oder beliebiger nanometer großer Bauteile, brauchen wir eine verlässlige Methode, um die Magnetisierungsrichtung lokaler Domänen auzulesen. Dafür erweitern wir die Untersuchungen an TAMR (tunneling magneto resistance) Strukturen und skalieren die Fläche des Tunnelkontakts von 100 µm auf 260 nm. In Kapitel 4 geben wir zunächst eine theoretische Beschreibung des TAMR Effekts und zeigen darauf im folgenden Kapitel 5 experimentelle Daten der miniaturisierten Tunnelkontakte. Mit diesen TAMR-Kontakten ist es möglich die Magnetisierung lokal in einer Grössenordnung von 100 nm zu detektieren. Sub-micron TAMR-Messungen und anisotrope Magnetowiderstandmessungen (AMR) an sub-millimeter Gebieten zeigen, dass das Verhalten von makrokopischen (Ga,Mn)As nicht das eines Makrospins ist, sondern ein Ensembledurchschnitt von vielen fast identischen Makrospins. Dieses Ergebnis ist mit der makroskopischen Beschreibung der lokalen magnetischen Aniotropien konform.\\ Ein rein elektrisch kontrollierbares Read-Write Speicherelement aus dem ferromagnetischen Halbleiter (Ga,Mn)As wird in Kapitel 6 gezeigt. Das Element besteht aus vier 200 nm breiten Streifen, die mit einer kreisförmigen zentralen Disc verbunden sind. Der erste Teil des Kapitels beschreibt die einzelnen Lithographieschritte zur Herstellung des Elements. Zum Auslesen der Magnetisierungsrichtung der zentralen Disc mit einem Durchmesser von 650 nm verwenden wir einen miniaturisierten TAMR-Kontakt. Die 200 nm breiten Streifen dienen als Quelle eines spinpolarisierten Stromes in die zentrale Disc. Das Injezieren von polarisierten Löchern mit einem Spin-Drehimpuls in eine magnetische Region verändert die Magnetisierung der Region durch p-d Austauschwechselwirkung zwischen lokalisierten Mn-Spins und den Löchern. Die Magnetisierung der zentralen Disc kann rein elektrisch kontrolliert werden and als Bit eines Logikelementes verwendet werden. In Kapitel 7 untersuchen wir den Domänenwiderstand in (Ga,Mn)As. Am Übergang von den Streifen zur zentralen Disc ist es möglich 90°- und 180° Domänenwände zu erzeugen und deren Widerstand zu messen.\\ Die Ergebnisse von Kapitel 5 bis 7, kombiniert mit dem bereits existierenden Ergebnissen einer ultrakompakten (Ga,Mn)As-basierenden Speicherzelle von Ref. [Papp 07c], sind die Schlüsselelemente die man zur Realisierung eines programmierbaren Logikelements benötigt. Die Arbeit von Referenz [Papp 07c] nutzt Lithographie induzierte Deformationsrelaxation, um eine Struktur zu erzeugen, die aus zwei senkrechten Streifen besteht und durch eine Verengung verbunden sind. Der Widerstand dieser Verengung ist von der relativen Magnetisierungsorientierung der beiden Streifen abhängig. Das programmierbare Logikelement besteht aus zwei zentralen Discs, die mittels einer schmalen Verengung verbunden sind. Die Magnetisierung der beiden zentralen Discs dienen als Eingänge und die Verengung als Ausgang während der Logikoperation. Das Konzept wird am Ende des sechsten Kapitels eingeführt und als Beispiel für eine Logikoperation wird ein XOR-Gate präsentiert. Die Funktionalität des hier gezeigten programmierbaren Logikschemas kann Problemlos auf ein multifunktionales Element erweitert werden. Diese Geometrie kann abhängig von der Anzahl der Eingänge und der gewählten Adressierung für verschiedene Rechenelemente genutzt werden. \\ Die Realisierung eines programmierbaren Logikelements ist in Kapitel 8 gezeigt. Der Widerstand der Verengung hängt von der relativen Magnetisierungsrichtung der beiden zentralen Discs ab und wird als Ausgang während der Logikoperation verwendet. Im Gegensatz zu Referenz [Papp 07c], indem die einzelnen über die Verengung verbundenen magnetischen Elemente jeweils nur zwei nicht-flüchtige magnetische Zustände besitzen, hat jede zentrale Disc in unserem Schema vier nicht-flüchtige magnetische Zustände. Das Verändern der Magnetisierungsrichtung einer zentralen Disc durch einen elektrischen Strom kann durch den jeweiligen TAMR-Kontakt und durch die Widerstandänderung der Verengung gemessen werden. Der Widerstands-Fingerabdruck (resistance polar plot) der Verengung zeigt die verschiedenen relativen Magnetisierungszutände der zentralen Discs.\\ Das hier präsentierte Konzept dient als reines Halbleiter und rein-elektrisches Logikelement. Es kombiniert eine Speicherzelle und Datenverarbeitung in einem neuartigen monolithischen Bauelement. KW - Magnetischer Halbleiter KW - Magnetische Halbleiter KW - Magnetische Anisotropien KW - Spinelektronik KW - magnetic semiconductors KW - magnetic anisotropy KW - Magnetic properties of thin films interfaces KW - Spinelectronic KW - Magnetische Anisotropie KW - Spintronik Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71223 ER -