TY - THES A1 - Elsner, Clara Dorothea T1 - Ultrastructural analysis of biogenesis and release of endothelial extracellular vesicles T1 - Ultrastrukturelle Analyse der Biogenese und Freisetzung von endothelialen extrazellulären Vesikeln N2 - Extracellular vesicle (EV)-mediated intercellular communication through exosomes, microvesicles (MVs) and apoptotic bodies has been shown to be implicated in various physiological as well as pathological processes such as the development and progression of atherosclerosis. While the cellular machinery controlling EV formation and composition has been studied extensively, little is known about the underlying morphological processes. This study focuses on a detailed ultrastructural analysis of the different steps of EV formation and release in Myocardial Endothelial (MyEnd) and Aortic Endothelial (AoEnd) cells cultured under serum starvation and inflammatory stimulation with TNF-α. Detailed morphological analyses were conducted applying and comparing different high- resolution light and electron microscopic methods. In this study, we could depict all steps of MV biogenesis named in literature. However, during the study of exosome biogenesis, we discovered a yet undescribed process: Instead of a direct fusion with the plasma membrane, multivesicular bodies were incorporated into a new distinct cellular compartment bound by fenestrated endothelium first. This may present a novel step in exosome biogenesis and warrants further study. Regarding the conditions of cell cultivation, we observed that the commonly used serum starvation causes MyEnd cells, but not AoEnd cells, to enter apoptosis after 48 hours. When preparing functional EV studies, we therefore recommend assessing the morphological condition of the serum-starved cells at different cultivation points first. When evaluating MV production, a statistical analysis showed that the more time AoEnd cells spent in cultivation under serum starvation, the higher the percentage of MV producing cells. However, additional TNF-α stimulation induced a significantly higher MV production than serum starvation alone. Lastly, our results show that TNF-α stimulation of AoEnd cells in vitro leads to the upregulation of CD44, an adhesion molecule critical in the early stages of atherosclerosis. CD44 was then depicted on the surface of generated MVs and exosomes. We conclude that under inflammatory conditions, EVs can mediate the transfer of CD44 from endothelial cells to target cells. This could be a novel mechanism by which MVs contribute to the development and progression of atherosclerotic disease and should be clarified by further studies. N2 - Extrazelluläre Vesikel (EV), darunter Exosomen, Mikrovesikel (MV) und apoptotische Körperchen, werden von fast allen Zellen des Körpers freigesetzt, transportieren zellspezifische Informationen und sind von großer Bedeutung in der Zell-Zell-Kommunikation. Sie spielen eine zentrale Rolle in verschiedensten physiologischen sowie pathologischen Vorgängen, wie etwa der Atherosklerose. Während die zellulären Mechanismen hinter der Entstehung und Komposition der EV bereits intensiv erforscht wurden, ist noch wenig über die zugrundeliegenden morphologischen Prozesse bekannt. Diese Arbeit präsentiert eine detaillierte ultrastrukturelle Analyse der Bildung und Freisetzung von EV in myokardialen (MyEnd) und aortalen Endothelzellen (AoEnd), die unter Serumentzug sowie inflammatorischer Stimulation mit TNF-α kultiviert wurden. Dazu wendeten wir verschiedene hochauflösende licht- und elektronenmikroskopische Techniken an. Wir konnten alle in der Literatur beschriebenen Schritte der MV-Biogenese darstellen. Bei der Untersuchung der exosomalen Biogenese entdeckten wir jedoch einen bisher unbekannten Prozess: Anstelle einer direkten Fusion der multivesikulären Körperchen mit der Plasmamembran, wurden diese zunächst in ein neues, von fenestriertem Endothel begrenztes, zelluläres Kompartiment integriert. Ferner stellten wir fest, dass der häufig durchgeführte Serumentzug während der Kultivierung bei MyEnd- – allerdings nicht AoEnd- – Zellen nach 48 Stunden zur Apoptose führte. Daher empfehlen wir, bei funktionellen Studien von EV zunächst eine morphologische Untersuchung der unter Serumentzug kultivierten Zellen zu verschiedenen Zeitpunkten durchzuführen. Eine statistische Analyse der MV-Produktion zeigte, dass die Zellen umso mehr MV produzierten, je länger sie sich unter Serumentzug befanden. Jedoch induzierte eine zusätzliche Stimulation mit TNF-α eine signifikant höhere MV-Produktion als der alleinige Serumentzug. Wir konnten zeigen, dass eine TNF-α Stimulation von AoEnd Zellen in vitro zu einer vermehrten Expression von CD44 führte – einem vor allem in der Frühphase der Atherosklerose bedeutendem Adhäsionsmolekül. CD44 konnte ebenso auf der Oberfläche von produzierten MV und Exosomen nachgewiesen werden. Wir schließen daraus, dass MV unter inflammatorischen Bedingungen den Transfer von CD44 von Endothelzellen zu Zielzellen vermitteln und so zur Entstehung und Progression von Atherosklerose beitragen können. KW - Vesikel KW - Exosom KW - Endothelzelle KW - Zellkommunikation KW - Atherosklerose KW - Extracellular Vesicles KW - Microvesicles KW - Exosomes KW - Cell-cell communication KW - Electron microscopy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288526 ER - TY - THES A1 - Michalska, Marta T1 - Molecular Imaging of atherosclerosis T1 - Molekulare Bildgebung der Atherosklerose N2 - Atherosklerose ist eine aktive und progressive Erkrankung, bei der vaskuläre Adhäsionsmoleküle wie VCAM-1 eine entscheidende Rolle durch Steuerung der Rekrutierung von Immunzellen in den frühen und fortgeschrittenen Plaques spielen. Ein zielgerichteter Einsatz von VCAM-1-Molekülen mit spezifischen Kontrastmitteln ist daher eine Möglichkeit, die VCAM-1-Expression zu kontrollieren, Plaquewachstum ab einem frühen Zeitpunkt zu visualisieren und eine frühe Prävention von Atherosklerose vor Beginn der Thrombusbildung zu etablieren. Des Weiteren bietet die nichtinvasive Magnetresonanz (MR)-Bildgebung den Vorteil der Kombination molekularer und morphologischer Daten. Sie ermöglicht, mithilfe von entwickelten VCAM-1-markierten Eisenoxidpartikeln, den spezifischen Nachweis entzündlicher Prozesse während der Atherosklerose. Diese Arbeit belegt, dass mit dem VCAM-1-Konzept eine vielversprechende Herangehensweise gefunden wurde und dass das, mit spezifischen superparamagnetischen Eisenoxid (USPIO) konjugierte VCAM-1-Peptid, gegenüber unspezifischer USPIOs ein erhöhtes Potenzial bei der Untersuchung der Atherosklerose in sich trägt. Im ersten Teil der Arbeit konnte im Mausmodell gezeigt werden, dass gerade das VCAM-1-Molekül ein sinnvoller Ansatzpunkt zur Darstellung und Bildgebung von Atherosklerose ist, da in der frühen Phase der Entzündung die vaskulären Zelladhäsionsmoleküle überexprimiert und auch kontinuierlich, während der fortschreitenden Plaquebildung, hochreguliert werden. Weiterhin beschreibt diese Arbeit die Funktionstüchtigkeit und das Vermögen des neu gestalteten USPIO Kontrastmittels mit dem zyklischen Peptid, in seiner Spezialisierung auf die VCAM-1 Erkennung. Experimentelle Studien mit ultra-Hochfeld-MRT ermöglichten weitere ex vivo und in vivo Nachweise der eingesetzten USPIO-VCAM-1-Partikel innerhalb der Region um die Aortenwurzel in frühen und fortgeschrittenen atherosklerotischen Plaques von 12 und 30 Wochen alten Apolipoprotein E-defizienten (ApoE-/-) Mäusen. Mit ihrer Kombination aus Histologie und Elektronenmikroskopie zeigt diese Studie zum ersten Mal die Verteilung von VCAM-1-markierten USPIO Partikeln nicht nur in luminalem Bereich der Plaques, sondern auch in tieferen Bereichen der medialen Muskelzellen. Dieser spezifische und sensitive Nachweis der frühen und fortgeschrittenen Stadien der Plaquebildung bringt auf molekularer Ebene neue Möglichkeiten zur Früherkennung von atherosklerotischen Plaques vor dem Entstehen von 8 Rupturen. Im Gegensatz zum USPIO-VCAM-1-Kontrastmittel scheiterten unspezifische USPIO Partikel an der Identifikation früher Plaqueformen und begrenzten die Visualisierung von Atherosklerose auf fortgeschrittene Stadien in ApoE-/- Mäusen. N2 - Atherosclerosis is an active and progressive condition where the vascular cell adhesion molecules as VCAM-1 play a vital role controlling the recruitment of immune cells within the early and advanced plaques. Therefore targeting of VCAM-1 molecules with specific contrast agent bears the possibility to monitor the VCAM-1 expression, visualize the plaque progression starting at the early alterations, and help to establish early prevention of atherosclerosis before the origin of the thrombus formation, of which late recognition leads to myocardial infarction. Furthermore noninvasive magnetic resonance imaging (MRI) offers the benefit of combining the molecular and anatomic data and would thus enable specific detection of VCAM-1 targeted iron oxide contrast agent within inflammatory process of atherosclerosis. This thesis exactly presents the VCAM-1 concept as a suitable molecular approach and the potential of specific ultrasmall superparamagnetic iron oxide (USPIO) conjugated to the VCAM-1 binding peptide over unspecific non-targeted USPIO particles for evaluation of atherosclerosis. This work firstly demonstrated that selection of VCAM-1 molecules offers a good and potential strategy for imaging of atherosclerosis, as these vascular cell adhesion molecules are highly expressed in the early phase of inflammation and also continuously up-regulated within the advanced plaques. Secondly, this thesis showed the proof of principle and capability of the newly designed USPIO contrast agent conjugated to the specific cyclic peptide for VCAM-1 recognition. The experimental studies including ultra-high field MRI enabled further ex vivo and in vivo detection of applied USPIO-VCAM-1 particles within the aortic root region of early and advanced atherosclerotic plaques of 12 and 30 week old apolipoprotein E deficient (ApoE-/-) mice. Using a combination of histology and electron microscopy, this study for the first time pointed to distribution of targeted USPIO-VCAM-1 particles within plaque cells expressing VCAM-1 not only in luminal regions but also in deeper medial smooth muscle cell areas. Hence functionalized USPIO particles targeting VCAM-1 molecules allow specific and sensitive detection of early and advanced plaques at the molecular level, giving the new possibilities for early recognition of atherosclerotic plaques before the appearance of advanced and prone to rupture lesions. In contrast to the functionalized USPIO-VCAM-1, utilized non-targeted USPIO particles did not succeed in early plaque 6 identification limiting visualization of atherosclerosis to advanced forms in atherosclerotic ApoE-/- mice. KW - VCAM KW - Arteriosklerose KW - Superparamagnetische Eisenoxid Kontrastmittel KW - vaskuläre Adhäsionsmoleküle KW - Atherosklerose KW - superparamagnetische Eisenoxid Kontrastmittel KW - vascular cell adhesion molecules KW - atherosclerosis KW - iron oxide contrast agent KW - Kontrastmittel Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73243 ER - TY - THES A1 - Padmapriya, Ponnuswamy T1 - Insight into oxidative stress mediated by nitric oxide synthase (NOS) isoforms in atherosclerosis N2 - The principle product of each NOS is nitric oxide. However, under conditions of substrate and cofactor deficiency the enzymes directly catalyze superoxide formation. Considering this alternative chemistry of each NOS, the effects of each single enzyme on key events of atherosclerosis are difficult to predict. Here, we evaluate nitric oxide and superoxide production by all three NOS isoforms in atherosclerosis. ESR measurements of circulating and vascular wall nitric oxide production showed significantly reduced nitric oxide levels in apoE/eNOS double knockout (dko) and apoE/iNOS dko animals but not in apoE/nNOS dko animals suggesting that eNOS and iNOS majorly contribute to vascular nitric oxide production in atherosclerosis. Pharmacological inhibition and genetic deletion of eNOS and iNOS reduced vascular superoxide production suggesting that eNOS and iNOS are uncoupled in atherosclerotic vessels. Though genetic deletion of nNOS did not alter superoxide production, acute inhibition of nNOS showed that nNOS contributes significantly to superoxide production. In conclusion, uncoupling of eNOS occurs in apoE ko atherosclerosis but eNOS mediated superoxide production does not outweigh the protective effects of eNOS mediated nitric oxide production. We show that although nNOS is not a major contributor of the vascular nitric oxide formation, it prevents atherosclerosis development. Acute inhibition of nNOS showed a significant reduction of superoxide formation suggesting that nNOS is uncoupled. The exact mechanism of action of nNOS in atheroprotection is yet to be elucidated. Genetic deletion of iNOS reduced NADPH oxidase activity. Thus, iNOS has both direct and indirect proatherosclerotic effects, as it directly generates both nitric oxide and superoxide simultaneously resulting in peroxynitrite formation and indirectly modulates NADPH oxidase activity. We hypothesize that eNOS is coupled in the disease free regions of the vessel and contributes to nitric oxide generation whereas in the diseased region of the vessel it is uncoupled to produce superoxide (Figure 16). nNOS expressed in the smooth muscle cells of the plaque contributes to the local superoxide generation. iNOS expressed in smooth muscle cells and leukocytes of the plaque generates superoxide and nitric oxide simultaneously to produce the strong oxidant peroxynitrite. N2 - Stickstoffmonoxid (NO) ist das prinzipielle Produkt aller Stickstoffmonoxid-Synthasen (NOS). Im Falle eines Mangels an Substrat (L-arginin) und Kofaktoren (Tetrahydrobiopterin, BH4) katalysieren die NOS-Enzyme direkt Superoxid (O2-). Diese Veränderung in der Radikalproduktion wird auch als Entkopplung der NOS bezeichnet. Die alternative Produktion von NO oder O2- durch die NOS bedingen, dass eine Voraussage über die Schlüsselfunktion der einzelnen Enzyme in der Entstehung der Atherosklerose schwierig ist. In unserer Studie evaluieren wir die Produktion von NO sowie O2- in atherosklerotischen Läsionen von apoE ko Mäusen und apoE/NOS doppel knockout (dko) Mäusen denen jeweils eine NOS-Isoform fehlt. Elektronen Spin Resonanz (ESR) Messungen konnten eine signifikante Reduktion sowohl des zirkulierenden, als auch der Gefäßwand eigenen Produktion von NO in apoE/eNOS dko und apoE/iNOS dko Mäusen zeigen, nicht jedoch in apoE/nNOS dko Mäusen. Dies lässt darauf schließen, dass eNOS und iNOS den hauptsächlichen Anteil der vaskulären NO-Produktion in atherosklerotischen Läsionen bewerkstelligen. Die pharmakologische Inhibierung wie auch die genetische Deletion von eNOS und iNOS führten ebenfalls zu einer reduzierten vaskulären O2- produktion, was die partielle Entkopplung beider Enzyme in atherosklerotisch veränderten Gefäßen nahe legt. Obwohl die chronische genetische Deletion von nNOS in apoE/nNOS dko die O2- Produktion nicht verändert, zeigte sich bei der akuten pharmakologischen Inhibierung von nNOS (durch L-NAANG) eine maßgebliche Beteiligung von nNOS an der O2- produktion in apoE ko Mäusen. Schlussfolgernd lässt sich sagen, dass in atherosklerotischen Gefäßen von apoE ko Tieren eine Entkopplung von eNOS statt findet, diese jedoch zu keinem Ausgleich der protektiven Effekte der eNOS vermittelten NO-Produktion führt. Unsere Ergebnisse in apoE/nNOS dko Mäusen zeigen eine atheroprotektive Rolle der nNOS, die sich nicht allein durch eine lokale, vaskuläre NO-Produktion durch das Enzym erklären lässt. Wir postulieren weitere systemisch atheroprotektive Eigenschaften der nNOS. Die signifikante Reduktion der Superoxidproduktion durch eine akute Inhibierung der nNOS weist auf eine Entkopplung der nNOS hin. Der exakte Wirkungsmechansimus von nNOS in der Atheroskleroseprävention ist weiterhin noch zu eruieren. Die genetische Deletion von iNOS führt zu einer reduzierten Aktivität der NADPH-Oxidase. Demnach sind für iNOS direkte sowie indirekte atherosklerosefördernde Effekte anzunehmen, da sie auf direktem Wege gleichzeitig NO und O2- produziert, was in einer Peroxynitritbildung resultiert. Wir stellen die Hypothese auf, dass eNOS in den läsionsfreien Gefäßregionen gekoppelt ist und dort seine atheroprotektiven Effekte durch die NO-Produktion vermittelt, während die eNOS in atherosklerotischen Läsionen entkoppelt vorliegt und hier O2- produziert (Fig. 16). iNOS, welches vor allem in den Plaques, in glatten Muskelzellen und Leukozyten zu finden ist, produziert gleichzeitig hohe Konzentrationen von O2- und NO, die als gemeinsames Endprodukt das stark oxidierende Peroxynitrit ergeben und die von uns dokumentierte proatherosklerotische Wirkung der iNOS vermittelt. KW - atherosclerosis KW - oxidative stress KW - Nitric oxide synthase KW - Atherosklerose KW - Stickstoffmonoxid Synthase KW - atherosclerosis KW - oxidative stress KW - Nitric oxide synthase Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30659 ER -