TY - JOUR A1 - Li, Gang A1 - Yan, Binghai A1 - Thomale, Ronny A1 - Hanke, Werner T1 - Topological nature and the multiple Dirac cones hidden in Bismuth high-Tc superconductors JF - Scientific Reports N2 - Recent theoretical studies employing density-functional theory have predicted BaBiO\(_{3}\) (when doped with electrons) and YBiO\(_{3}\) to become a topological insulator (TI) with a large topological gap (~0.7 eV). This, together with the natural stability against surface oxidation, makes the Bismuth-Oxide family of special interest for possible applications in quantum information and spintronics. The central question, we study here, is whether the hole-doped Bismuth Oxides, i.e. Ba\(_{1-X}\)K\(_{X}\)BiO\(_{3}\) and BaPb\(_{1-X}\)Bi\(_{X}\)O\(_{3}\), which are "high-Tc" bulk superconducting near 30 K, additionally display in the further vicinity of their Fermi energy E\(_{F}\) a topological gap with a Dirac-type of topological surface state. Our electronic structure calculations predict the K-doped family to emerge as a TI, with a topological gap above E\(_{F}\). Thus, these compounds can become superconductors with hole-doping and potential TIs with additional electron doping. Furthermore, we predict the Bismuth-Oxide family to contain an additional Dirac cone below E\(_{F}\) for further hole doping, which manifests these systems to be candidates for both electron-and hole-doped topological insulators. KW - localized wannier functions KW - total energy calculations KW - phase transitions KW - insulator KW - BaPb\(_{1-X}\)Bi\(_{X}\)O\(_{3}\) KW - temperature KW - system KW - wave basis set KW - initio molecular dynamics KW - diffraction Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148569 VL - 5 IS - 10435 ER - TY - JOUR A1 - Schrewe, L. A1 - Lill, C. M. A1 - Liu, T. A1 - Salmen, A. A1 - Gerdes, L. A. A1 - Guillot-Noel, L. A1 - Akkad, D. A. A1 - Blaschke, P. A1 - Graetz, C. A1 - Hoffjan, S. A1 - Kroner, A. A1 - Demir, S. A1 - Böhme, A. A1 - Rieckmann, P. A1 - El Ali, A. A1 - Hagemann, N. A1 - Hermann, D. M. A1 - Cournu-Rebeix, I. A1 - Zipp, F. A1 - Kümpfel, T. A1 - Buttmann, M. A1 - Zettl, U. K. A1 - Fontaine, B. A1 - Bertram, L. A1 - Gold, R. A1 - Chan, A. T1 - Investigation of sex-specific effects of apolipoprotein E on severity of EAE and MS JF - Journal of Neuroinflammation N2 - Background: Despite pleiotropic immunomodulatory effects of apolipoprotein E (apoE) in vitro, its effects on the clinical course of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS) are still controversial. As sex hormones modify immunomodulatory apoE functions, they may explain contentious findings. This study aimed to investigate sex-specific effects of apoE on disease course of EAE and MS. Methods: MOG\(_{35-55}\) induced EAE in female and male apoE-deficient mice was assessed clinically and histopathologically. apoE expression was investigated by qPCR. The association of the MS severity score (MSSS) and APOE rs429358 and rs7412 was assessed across 3237 MS patients using linear regression analyses. Results: EAE disease course was slightly attenuated in male apoE-deficient (apoE\(^{-/-}\)) mice compared to wildtype mice (cumulative median score: apoE\(^{-/-}\) = 2 [IQR 0.0-4.5]; wildtype = 4 [IQR 1.0-5.0]; n = 10 each group, p = 0.0002). In contrast, EAE was more severe in female apoE\(^{-/-}\) mice compared to wildtype mice (cumulative median score: apoE\(^{-/-}\) = 3 [IQR 2.0-4.5]; wildtype = 3 [IQR 0.0-4.0]; n = 10, p = 0.003). In wildtype animals, apoE expression during the chronic EAE phase was increased in both females and males (in comparison to naive animals; p < 0.001). However, in MS, we did not observe a significant association between MSSS and rs429358 or rs7412, neither in the overall analyses nor upon stratification for sex. Conclusions: apoE exerts moderate sex-specific effects on EAE severity. However, the results in the apoE knock-out model are not comparable to effects of polymorphic variants in the human APOE gene, thus pinpointing the challenge of translating findings from the EAE model to the human disease. KW - immune KW - apoE KW - gender KW - inflammation KW - association studies in genetics KW - apoe KW - CNS disease KW - system KW - multiple sclerosis KW - MSSS KW - experimental autoimmune encephalomyelitis KW - disease severity KW - cognitive function KW - Alzheimer disease Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136252 VL - 12 IS - 234 ER -