TY - JOUR A1 - Henriksson, Sofia A1 - Calderón-Montaño, José Manuel A1 - Solvie, Daniel A1 - Warpman Berglund, Ulrika A1 - Helleday, Thomas T1 - Overexpressed c-Myc sensitizes cells to TH1579, a mitotic arrest and oxidative DNA damage inducer JF - Biomolecules N2 - Previously, we reported that MTH1 inhibitors TH588 and TH1579 selectively induce oxidative damage and kill Ras-expressing or -transforming cancer cells, as compared to non-transforming immortalized or primary cells. While this explains the impressive anti-cancer properties of the compounds, the molecular mechanism remains elusive. Several oncogenes induce replication stress, resulting in under replicated DNA and replication continuing into mitosis, where TH588 and TH1579 treatment causes toxicity and incorporation of oxidative damage. Hence, we hypothesized that oncogene-induced replication stress explains the cancer selectivity. To test this, we overexpressed c-Myc in human epithelial kidney cells (HA1EB), resulting in increased proliferation, polyploidy and replication stress. TH588 and TH1579 selectively kill c-Myc overexpressing clones, enforcing the cancer cell selective killing of these compounds. Moreover, the toxicity of TH588 and TH1579 in c-Myc overexpressing cells is rescued by transcription, proteasome or CDK1 inhibitors, but not by nucleoside supplementation. We conclude that the molecular toxicological mechanisms of how TH588 and TH1579 kill c-Myc overexpressing cells have several components and involve MTH1-independent proteasomal degradation of c-Myc itself, c-Myc-driven transcription and CDK activation. KW - MTH1 KW - TH588 KW - TH1579 KW - c-Myc KW - replication stress KW - DNA damage KW - cell death KW - cancer Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297547 SN - 2218-273X VL - 12 IS - 12 ER - TY - JOUR A1 - Djelić, Ninoslav A1 - Borozan, Sunčica A1 - Dimitrijević-Srećković, Vesna A1 - Pajović, Nevena A1 - Mirilović, Milorad A1 - Stopper, Helga A1 - Stanimirović, Zoran T1 - Oxidative stress and DNA damage in peripheral blood mononuclear cells from normal, obese, prediabetic and diabetic persons exposed to thyroid hormone in vitro JF - International Journal of Molecular Sciences N2 - Diabetes, a chronic group of medical disorders characterized byhyperglycemia, has become a global pandemic. Some hormones may influence the course and outcome of diabetes, especially if they potentiate the formation of reactive oxygen species (ROS). There is a close relationship between thyroid disorders and diabetes. The main objective of this investigation was to find out whether peripheral blood mononuclear cells (PBMCs) are more prone to DNA damage by triiodothyronine (T\(_3\)) (0.1, 1 and 10 μM) at various stages of progression through diabetes (obese, prediabetics, and type 2 diabetes mellitus—T2DM persons). In addition, some biochemical parameters of oxidative stress (catalase-CAT, thiobarbituric acid reactive substances—TBARS) and lactate dehydrogenase (LDH) were evaluated. PBMCs from prediabetic and diabetic patients exhibited increased sensitivity for T\(_3\) regarding elevated level of DNA damage, inhibition of catalase, and increase of TBARS and LDH. PBMCs from obese patients reacted in the same manner, except for DNA damage. The results of this study should contribute to a better understanding of the role of thyroid hormones in the progression of T2DM. KW - diabetes KW - oxidative stress KW - DNA damage KW - lymphocytes KW - thyroid hormone Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285988 SN - 1422-0067 VL - 23 IS - 16 ER - TY - JOUR A1 - Ben Khaled, Najib A1 - Hammer, Katharina A1 - Ye, Liangtao A1 - Alnatsha, Ahmed A1 - Widholz, Sebastian A. A1 - Piseddu, Ignazio A1 - Sirtl, Simon A1 - Schneider, Julia A1 - Munker, Stefan A1 - Mahajan, Ujjwal Mukund A1 - Montero, Juan José A1 - Griger, Joscha A1 - Mayerle, Julia A1 - Reiter, Florian P. A1 - De Toni, Enrico N. T1 - TRAIL receptor targeting agents potentiate PARP inhibitor efficacy in pancreatic cancer independently of BRCA2 mutation status JF - Cancers N2 - Chemotherapy, the standard treatment for pancreatic ductal adenocarcinoma (PDAC), has only a modest effect on the outcome of patients with late-stage disease. Investigations of the genetic features of PDAC have demonstrated a frequent occurrence of mutations in genes involved in homologous recombination (HR), especially in the breast cancer susceptibility gene 2 (BRCA2). Olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor, is approved as a maintenance treatment for patients with advanced PDAC with germline BRCA1/2 mutations following a platinum-containing first-line regimen. Limitations to the use of PARP inhibitors are represented by the relatively small proportion of patients with mutations in BRCA1/2 genes and the modest capability of these substances of inducing objective response. We have previously shown that pancreatic cancer with BRCA2 mutations exhibits a remarkably enhanced sensitivity towards tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) receptor-stimulating agents. We thus aimed to investigate the effect of combined treatment with PARP inhibitors and TRAIL receptor-stimulating agents in pancreatic cancer and its dependency on the BRCA2 gene status. The respective effects of TRAIL-targeting agents and the PARP inhibitor olaparib or of their combination were assessed in pancreatic cancer cell lines and patient-derived organoids. In addition, BRCA2-knockout and -complementation models were investigated. The effects of these agents on apoptosis, DNA damage, cell cycle, and receptor surface expression were assessed by immunofluorescence, Western blot, and flow cytometry. PARP inhibition and TRAIL synergized to cause cell death in pancreatic cancer cell lines and PDAC organoids. This effect proved independent of BRCA2 gene status in three independent models. Olaparib and TRAIL in combination caused a detectable increase in DNA damage and a concentration-dependent cell cycle arrest in the G2/M and S cell cycle phases. Olaparib also significantly increased the proportion of membrane-bound death receptor 5. Our results provide a preclinical rationale for the combination of PARP inhibitors and TRAIL receptor agonists for the treatment of pancreatic cancer and suggest that the use of PARP inhibitors could be extended to patients without BRCA2 mutations if used in combination with TRAIL agonists. KW - apoptosis KW - DNA damage KW - pancreatic neoplasms KW - poly(ADP-ribose) polymerase inhibitors KW - TNF-related apoptosis-inducing ligand Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290884 SN - 2072-6694 VL - 14 IS - 21 ER - TY - JOUR A1 - Winkelbeiner, Nicola A1 - Wandt, Viktoria K. A1 - Ebert, Franziska A1 - Lossow, Kristina A1 - Bankoglu, Ezgi E. A1 - Martin, Maximilian A1 - Mangerich, Aswin A1 - Stopper, Helga A1 - Bornhorst, Julia A1 - Kipp, Anna P. A1 - Schwerdtle, Tanja T1 - A multi-endpoint approach to base excision repair incision activity augmented by PARylation and DNA damage levels in mice: impact of sex and age JF - International Journal of Molecular Sciences N2 - Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2'-deoxyguanosine (8-oxodG), 5-hydroxy-2'-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery. KW - maintenance of genomic integrity KW - ageing KW - sex KW - DNA damage KW - base excision repair (incision activity) KW - DNA damage response KW - poly(ADP-ribosyl)ation KW - liver Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285706 SN - 1422-0067 VL - 21 IS - 18 ER - TY - JOUR A1 - Trifault, Barbara A1 - Mamontova, Victoria A1 - Burger, Kaspar T1 - In vivo proximity labeling of nuclear and nucleolar proteins by a stably expressed, DNA damage-responsive NONO-APEX2 fusion protein JF - Frontiers in Molecular Biosciences N2 - Cellular stress can induce DNA lesions that threaten the stability of genes. The DNA damage response (DDR) recognises and repairs broken DNA to maintain genome stability. Intriguingly, components of nuclear paraspeckles like the non-POU domain containing octamer-binding protein (NONO) participate in the repair of DNA double-strand breaks (DSBs). NONO is a multifunctional RNA-binding protein (RBP) that facilitates the retention and editing of messenger (m)RNA as well as pre-mRNA processing. However, the role of NONO in the DDR is poorly understood. Here, we establish a novel human U2OS cell line that expresses NONO fused to the engineered ascorbate peroxidase 2 (U2OS:NONO-APEX2-HA). We show that NONO-APEX2-HA accumulates in the nucleolus in response to DNA damage. Combining viability assays, subcellular localisation studies, coimmunoprecipitation experiments and in vivo proximity labeling, we demonstrate that NONO-APEX2-HA is a stably expressed fusion protein that mimics endogenous NONO in terms of expression, localisation and bona fide interactors. We propose that in vivo proximity labeling in U2OS:NONO-APEX2-HA cells is capable for the assessment of NONO interactomes by downstream assays. U2OS:NONO-APEX2-HA cells will likely be a valuable resource for the investigation of NONO interactome dynamics in response to DNA damage and other stimuli. KW - APEX2 KW - proximity labeling KW - NONO KW - paraspeckles KW - nucleolus KW - DNA damage Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276707 SN - 2296-889X VL - 9 ER - TY - JOUR A1 - Schumann, S. A1 - Eberlein, U. A1 - Lapa, C. A1 - Müller, J. A1 - Serfling, S. A1 - Lassmann, M. A1 - Scherthan, H. T1 - α-Particle-induced DNA damage tracks in peripheral blood mononuclear cells of [\(^{223}\)Ra]RaCl\(_{2}\)-treated prostate cancer patients JF - European Journal of Nuclear Medicine and Molecular Imaging N2 - Purpose One therapy option for prostate cancer patients with bone metastases is the use of [\(^{223}\)Ra]RaCl\(_{2}\). The α-emitter \(^{223}\)Ra creates DNA damage tracks along α-particle trajectories (α-tracks) in exposed cells that can be revealed by immunofluorescent staining of γ-H2AX+53BP1 DNA double-strand break markers. We investigated the time- and absorbed dose-dependency of the number of α-tracks in peripheral blood mononuclear cells (PBMCs) of patients undergoing their first therapy with [\(^{223}\)Ra]RaCl\(_{2}\). Methods Multiple blood samples from nine prostate cancer patients were collected before and after administration of [\(^{223}\)Ra]RaCl\(_{2}\), up to 4 weeks after treatment. γ-H2AX- and 53BP1-positive α-tracks were microscopically quantified in isolated and immuno-stained PBMCs. Results The absorbed doses to the blood were less than 6 mGy up to 4 h after administration and maximally 16 mGy in total. Up to 4 h after administration, the α-track frequency was significantly increased relative to baseline and correlated with the absorbed dose to the blood in the dose range < 3 mGy. In most of the late samples (24 h - 4 weeks after administration), the α-track frequency remained elevated. Conclusion The γ-H2AX+53BP1 assay is a potent method for detection of α-particle-induced DNA damages during treatment with or after accidental incorporation of radionuclides even at low absorbed doses. It may serve as a biomarker discriminating α- from β-emitters based on damage geometry. KW - γ-H2AX KW - DNA damage KW - nuclear medicine KW - dosimetry KW - α-Emitter KW - biokinetics KW - prostate cancer KW - [\(^{223}\)Ra]RaCl\(_{2}\) KW - 53BP1 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265462 SN - 1619-7089 VL - 48 IS - 9 ER - TY - JOUR A1 - Djuzenova, Cholpon S. A1 - Fischer, Thomas A1 - Katzer, Astrid A1 - Sisario, Dmitri A1 - Korsa, Tessa A1 - Streussloff, Gudrun A1 - Sukhorukov, Vladimir L. A1 - Flentje, Michael T1 - Opposite effects of the triple target (DNA-PK/PI3K/mTOR) inhibitor PI-103 on the radiation sensitivity of glioblastoma cell lines proficient and deficient in DNA-PKcs JF - BMC Cancer N2 - Background: Radiotherapy is routinely used to combat glioblastoma (GBM). However, the treatment efficacy is often limited by the radioresistance of GBM cells. Methods: Two GBM lines MO59K and MO59J, differing in intrinsic radiosensitivity and mutational status of DNA-PK and ATM, were analyzed regarding their response to DNA-PK/PI3K/mTOR inhibition by PI-103 in combination with radiation. To this end we assessed colony-forming ability, induction and repair of DNA damage by gamma H2AX and 53BP1, expression of marker proteins, including those belonging to NHEJ and HR repair pathways, degree of apoptosis, autophagy, and cell cycle alterations. Results: We found that PI-103 radiosensitized MO59K cells but, surprisingly, it induced radiation resistance in MO59J cells. Treatment of MO59K cells with PI-103 lead to protraction of the DNA damage repair as compared to drug-free irradiated cells. In PI-103-treated and irradiated MO59J cells the foci numbers of both proteins was higher than in the drug-free samples, but a large portion of DNA damage was quickly repaired. Another cell line-specific difference includes diminished expression of p53 in MO59J cells, which was further reduced by PI-103. Additionally, PI-103-treated MO59K cells exhibited an increased expression of the apoptosis marker cleaved PARP and increased subG1 fraction. Moreover, irradiation induced a strong G2 arrest in MO59J cells (similar to 80% vs. similar to 50% in MO59K), which was, however, partially reduced in the presence of PI-103. In contrast, treatment with PI-103 increased the G2 fraction in irradiated MO59K cells. Conclusions: The triple-target inhibitor PI-103 exerted radiosensitization on MO59K cells, but, unexpectedly, caused radioresistance in the MO59J line, lacking DNA-PK. The difference is most likely due to low expression of the DNA-PK substrate p53 in MO59J cells, which was further reduced by PI-103. This led to less apoptosis as compared to drug-free MO59J cells and enhanced survival via partially abolished cell-cycle arrest. The findings suggest that the lack of DNA-PK-dependent NHEJ in MO59J line might be compensated by DNA-PK independent DSB repair via a yet unknown mechanism. KW - DNA damage KW - DNA-PK KW - Histone gamma H2AX KW - p53 KW - Radiation sensitivity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265826 VL - 21 ER - TY - JOUR A1 - Bankoglu, Ezgi Eyluel A1 - Schuele, Carolin A1 - Stopper, Helga T1 - Cell survival after DNA damage in the comet assay JF - Archives of Toxicology N2 - The comet assay is widely used in basic research, genotoxicity testing, and human biomonitoring. However, interpretation of the comet assay data might benefit from a better understanding of the future fate of a cell with DNA damage. DNA damage is in principle repairable, or if extensive, can lead to cell death. Here, we have correlated the maximally induced DNA damage with three test substances in TK6 cells with the survival of the cells. For this, we selected hydrogen peroxide (H\(_{2}\)O\(_{2}\)) as an oxidizing agent, methyl methanesulfonate (MMS) as an alkylating agent and etoposide as a topoisomerase II inhibitor. We measured cell viability, cell proliferation, apoptosis, and micronucleus frequency on the following day, in the same cell culture, which had been analyzed in the comet assay. After treatment, a concentration dependent increase in DNA damage and in the percentage of non-vital and apoptotic cells was found for each substance. Values greater than 20-30% DNA in tail caused the death of more than 50% of the cells, with etoposide causing slightly more cell death than H\(_{2}\)O\(_{2}\) or MMS. Despite that, cells seemed to repair of at least some DNA damage within few hours after substance removal. Overall, the reduction of DNA damage over time is due to both DNA repair and death of heavily damaged cells. We recommend that in experiments with induction of DNA damage of more than 20% DNA in tail, survival data for the cells are provided. KW - Cell death and comet assay KW - DNA damage KW - DNA repair Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265339 VL - 95 IS - 12 ER - TY - JOUR A1 - Bankoglu, Ezgi Eyluel A1 - Stipp, Franzisca A1 - Gerber, Johanna A1 - Seyfried, Florian A1 - Heidland, August A1 - Bahner, Udo A1 - Stopper, Helga T1 - Effect of cryopreservation on DNA damage and DNA repair activity in human blood samples in the comet assay JF - Archives of Toxicology N2 - The comet assay is a commonly used method to determine DNA damage and repair activity in many types of samples. In recent years, the use of the comet assay in human biomonitoring became highly attractive due to its various modified versions, which may be useful to determine individual susceptibility in blood samples. However, in human biomonitoring studies, working with large sample numbers that are acquired over an extended time period requires some additional considerations. One of the most important issues is the storage of samples and its effect on the outcome of the comet assay. Another important question is the suitability of different blood preparations. In this study, we analysed the effect of cryopreservation on DNA damage and repair activity in human blood samples. In addition, we investigated the suitability of different blood preparations. The alkaline and FPG as well as two different types of repair comet assay and an in vitro hydrogen peroxide challenge were applied. Our results confirmed that cryopreserved blood preparations are suitable for investigating DNA damage in the alkaline and FPG comet assay in whole blood, buffy coat and PBMCs. Ex vivo hydrogen peroxide challenge yielded its optimal effect in isolated PBMCs. The utilised repair comet assay with either UVC or hydrogen peroxide-induced lesions and an aphidicolin block worked well in fresh PBMCs. Cryopreserved PBMCs could not be used immediately after thawing. However, a 16-h recovery with or without mitotic stimulation enabled the application of the repair comet assay, albeit only in a surviving cell fraction. KW - human biomonitoring KW - DNA damage KW - DNA repair KW - comet assay KW - blood samples Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265326 VL - 95 IS - 5 ER - TY - THES A1 - Xu, Wenshan T1 - Regulation of the DNA Damage Response by the Ubiquitin System T1 - Regulierung der DNA-Schadensreaktion durch das Ubiquitin System N2 - DNA damage occurs frequently during normal cellular progresses or by environmental factors. To preserve the genome integrity, DNA damage response (DDR) has evolved to repair DNA and the non-properly repaired DNA induces human diseases like immune deficiency and cancer. Since a large number of proteins involved in DDR are enzymes of ubiquitin system, it is critical to investigate how the ubiquitin system regulates cellular response to DNA damage. Hereby, we reveal a novel mechanism for DDR regulation via activation of SCF ubiquitin ligase upon DNA damage. As an essential step for DNA damage-induced inhibition of DNA replication, Cdc25A degradation by the E3 ligase β-TrCP upon DNA damage requires the deubiquitinase Usp28. Usp28 deubiquitinates β-TrCP in response to DNA damage, thereby promotes its dimerization, which is required for its activity in substrate ubiquitination and degradation. Particularly, ubiquitination at a specific lysine on β-TrCP suppresses dimerization. The key mediator protein of DDR, 53BP1, forms oligomers and associates with β-TrCP to inhibit its activity in unstressed cells. Upon DNA damage, 53BP1 is degraded in the nucleoplasm, which requires oligomerization and is promoted by Usp28 in a β-TrCP-dependent manner. Consequently, 53BP1 destruction releases and activates β-TrCP during DNA damage response. Moreover, 53BP1 deletion and DNA damage promote β-TrCP dimerization and recruitment to chromatin sites that locate in the vicinity of putative replication origins. Subsequently, the chromatin-associated Cdc25A is degraded by β-TrCP at the origins. The stimulation of β-TrCP binding to the origins upon DNA damage is accompanied by unloading of Cdc45, a crucial component of pre-initiation complexes for replication. Loading of Cdc45 to origins is a key Cdk2-dependent step for DNA replication initiation, indicating that localized Cdc25A degradation by β-TrCP at origins inactivates Cdk2, thereby inhibits the initiation of DNA replication. Collectively, this study suggests a novel mechanism for the regulation of DNA replication upon DNA damage, which involves 53BP1- and Usp28-dependent activation of the SCF(β-TrCP) ligase in Cdc25A degradation. N2 - DNA-Schäden treten häufig in Folge zellulären Fortschrittes oder durch externe Faktoren auf. Um die Integrität des Genoms zu bewahren und DNA Schäden zu reparieren, die Ursache für viele Autoimmunkrankheiten und Krebs sind, hat sich ein durch DNA Schäden getriggertes Geflecht aus Reparaturprozessen (englisch: “DNA damage response (DDR)”) entwickelt. Hierbei ist es von großem Interesse zu verstehen, wie das Ubiquitin-Proteasom-System die zelluläre Antwort auf DNA-Schäden reguliert. Wir konnten zeigen, dass die SCF Ubiquitin Ligase β-TrCP durch geschädigte DNA aktiviert wird, was einen bisher unbekannten Mechanismus für die Regulation der DDR darstellt. Für den grundlegenden Schritt der durch DNA Schäden ausgelösten Inhibition der DNA Replikation – der Abbau von Cdc25A durch die E3 Ligase β-TrCP – wird die Deubiquitinase Usp28 benötigt. Diese deubiquitiniert β-TrCP als Antwort auf DNA-Schäden und fördert dadurch seine Dimerisierung, die für die Substrat-Ubiquitinierung und dem anschließenden Abbau erforderlich ist. Hierbei unterdrückt die Ubiquitinierung eines spezifischen Lysin-Rests von β-TrCP dessen Dimerisierung. Das Schlüsselprotein vom DDR, 53BP1, oligomerisiert und assoziiert mit β-TrCP, was seine Aktivität in gesunden Zellen inhibiert. Auf DNA-Schäden hin oligomerisiert 53BP1 und wird mit Hilfe von Usp28 abhängig von β-TrCP im Nukleoplasma abgebaut. Durch den Abbau von 53BP1 wird β-TrCP freigesetzt, aktiviert und kann auf DNA Schäden reagieren. Die Deletion von 53BP1 fördert die Dimerisierung von β-TrCP. Die Reparaturmaschinerie wird daraufhin an Stellen des Chromatins rekrutiert, die in der Nähe von vermeintlichen Replikationsursprüngen liegen. Chromatin-assoziiertes Cdc25A wird dann durch β-TrCP ubiquitiniert. Die Bindung von β-TrCP an die Replikationsursprünge in Folge von DNA Schädigung wird begleitet von der Freisetzung von Cdc45, das eine entscheidende Komponente des Präinitiationskomplexes darstellt. Das Beladen von Cdc45 an die Replikationsursprünge stellt eine Schlüsselfunktion der Cdc25A-abhängigen DNA Replikationsinititation dar. Gezielter Abbau von Cdc25A durch β-TrCP an den Replikationsursprüngen inaktiviert Cdk2 und inhibiert dadurch DNA Replikation. Zusammenfassend lässt sich konstatieren, dass unsere Studien einen neuartigen Mechanismus für die Regulation der DNA Replikation auf DNA Schäden hin aufgezeigt haben, der die 53BP1- und Usp28-abhängige Aktivierung der SCF(β-TrCP) Ubiquitin Ligase im Abbau von Cdc25A beinhaltet. KW - DNS-Schädigung KW - DNS-Reparatur KW - Ubiquitin KW - DNA damage KW - Ubiquitin system Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160064 ER -