TY - JOUR A1 - Brixner, Tobias A1 - Koch, Federico A1 - Kullmann, Martin A1 - Selig, Ulrike A1 - Nuernberger, Patrick A1 - Götz, Daniel C. G. A1 - Bringmann, Gerhard T1 - Coherent two-dimensional electronic spectroscopy in the Soret band of a chiral porphyrin dimer JF - New Journal of Physics N2 - Using coherent two-dimensional (2D) electronic spectroscopy in fully noncollinear geometry, we observe the excitonic coupling of β,β'-linked bis[tetraphenylporphyrinato-zinc(II)] on an ultrafast timescale in the excited state. The results for two states in the Soret band originating from an excitonic splitting are explained by population transfer with approximately 100 fs from the energetically higher to the lower excitonic state. This interpretation is consistent with exemplary calculations of 2D spectra for a model four-level system with coupling. KW - optics KW - quantum optics KW - laser Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96139 ER - TY - THES A1 - Noller, Bastian T1 - Excited-State Dynamics of Organic Intermediates T1 - Dynamik Angeregter Zustände von Organischen Intermediaten N2 - This thesis gives insights into the real-time dynamics of several free carbenes and radicals on a femtosecond and nanosecond time scale. The experiments were performed with radicals, singlet carbenes and triplet carbenes of various sizes. Several neutral excited states as well as the ionic ground state were characterized. Despite the relevance of such reactive intermediates in almost all chemical reactions, only relatively little experimental information on such systems is found in the literature. This is linked to the experimental challenge of producing such species under isolated conditions. The intermediates are formed from precursor molecules under interaction- free conditions by supersonic jet flash pyrolysis. The precursor molecules were synthetically designed to show clean thermal dissociation into one specific intermediate. A large variety of spectroscopic techniques was applied to study the intermediates. Each method augments the results of the other methods. This enabled to successfully approach the main goal of this thesis: to understand the excited-state dynamics of organic intermediates. The excited states were found to deactivate rapidly to the hot ground state. The observed fast decay is presumably linked to coupled electronically excited states and relaxation takes place by internal conversion or conical intersections. Further reactions then take place on the ground state surface. Absorption spectra, photodissociation dynamics, photoelectron spectra, ionization potentials, excited-state lifetimes and dissociative photoionization were elucidated by the measurements. Pulsed and continuous light sources were used over a large spectral range (UV, Vis, VUV). A well-defined amount of energy was deposited into the molecule. After internal conversion has taken place, a microcanonical ensemble of reactive intermediates can be studied. This data helps to understand the energetics and reaction channels of intermediates. Velocity map imaging enabled to monitor the pyrolysis efficiency in real time by analyzing photoion images. This observation facilitates clean intermediate generation. Experimental results were compared to quantum chemical calculations to aid the interpretation as well as to test the performance of theoretical approaches. Hydrocarbon radicals and carbenes are regarded as benchmark systems for computational methods due to their several low-lying electronic states and open-shell electronic configuration. The experimental data can help to identify and understand the contributions of the examined intermediates to the chemistry of high energy environments (e. g., hydrocarbon cracking reactors, interstellar space and combustion chambers). Here increased numbers of hydrocarbon intermediates are often present and usually have a strong impact on the overall reaction mechanism. Such environments contain in general a complex mixture of several different intermediates. The more spectroscopic and dynamic properties of each isolated intermediate are known, the easier it is to identify it among multiple components and to understand how it contributes to the overall reaction mechanism. Electronic excitation can take place by radiation, particle collisions or thermally at very high temperatures. How excited states influence the reaction mechanisms is still a matter of currant research. N2 - Diese Arbeit gibt Einblicke in die Dynamik angeregter Zustände von mehreren isolierten Carbenen und Radikalen. Experimente wurden an verschieden großen Radikalen, singlet Carbenen und triplet Carbenen durchgeführt. Angeregte elektronische Zustände, Grundzustände von Radikal-Kationen und die Photodissoziations-Dynamik des Grundzustandes wurden charakterisiert. Obwohl beinahe alle chemischen Reaktionen über reaktive Intermediate ablaufen, ihnen Schlüsselrollen bei Verbrennungsprozessen zugesprochen werden und sie in hohen Konzentrationen in interstellaren Medien vorkommen, sind viele dieser Spezies unzureichend charakterisiert. Dies liegt hauptsächlich am hohen experimentellen Aufwand, der zur sauberen Herstellung und Untersuchung von Intermediaten nötig ist. Die Intermediate in dieser Arbeit wurden mittels Supersonic-Jet- Flash-Pyrolysis generiert. Mit dieser Technik konnten die hoch reaktiven Moleküle konserviert und unter isolierten Bedingungen spektroskopisch untersucht werden. Hierfür wurden spezielle Vorläufermoleküle synthetisch hergestellt und auf ihre saubere thermische Zersetzung hin getestet und optimiert. Die Intermediate wurden mit einer Reihe von spektroskopischen Methoden untersucht, die sich auf eine hervorragende Art und Weise ergänzten. Das Hauptziel der Dissertation konnte somit erfolgreich abgeschlossen werden und das Verhalten angeregten Zustände einiger wichtiger Intermediate verstanden werden. Die Zustände relaxieren auf einer Femtosekunden-Zeitskala zum heißen Grundzustand. Die schnelle Deaktivierung ist allerWahrscheinlichkeit nach auf eine Kopplung der elektronisch angeregten Zustände zurückzuführen. Die Relaxation erfolgt über interne Konversion und konische Durchschneidungen. Photochemische Reaktionen laufen anschließend vom heißen Grundzustand aus ab. Zusätzlich konnten viele Charakteristika der Intermediate untersucht werden: Absorptionsspektren, Photochemie, Photoelektronenspektren, Ionisierungsenergien und dissoziative Photoionisation. Für die Untersuchungen wurde, über einen breiten spektralen Bereich (UV,Vis,VUV), hauptsächlich frequenz- und zeitaufgelöste Laser-Spektroskopie eingesetzt. Nachdem die Moleküle zum Grundzustand relaxiert waren, konnte die Dynamik eines mikrokanonischen Ensembles von reaktiven Intermediaten untersucht werden. Diese Untersuchungen helfen die Energetik und Reaktionskanäle der Intermediate zu verstehen. Zusätzlich wurden Messungen mit Synchrotron- Strahlung und TPEPICO-Spektroskopie durchgeführt; vorwiegend um die IPs der Spezies zu bestimmen wurde diese Technik angewandt. Velocity-Map-Imaging wurde zusammen mit der Radikalquelle erprobt. Ergänzend zu zeitaufgelösten Photoelektronenspektren konnten mit dieser Methode neue Wege zur Optimierung der Radikalerzeugung aufgezeigt werden. Die Effizienz der Pyrolyse konnte anhand der Photoionen-Images in Echtzeit verfolgt werden. Dies vereinfacht die Darstellung reaktiver Intermediate. Die experimentellen Daten wurden mit quantenchemischen Rechnungen verglichen, um die Interpretation zu erleichtern. Des Weiteren weisen Intermediate häufig eine komplexe elektronische Struktur auf und können somit zum evaluieren quantenmechanischer Methoden verwendet werden. Die erarbeiteten experimentellen Daten können helfen die spektroskopisch untersuchten Intermediate in komplexen Reaktionsgemischen zu erkennen und ihre dynamische Rolle darin besser zu verstehen. Je mehr Information über einzelne isolierte Intermediate bekannt ist, desto einfacher können ihre Beiträge differenziert aufgeschlüsselt werden. Eine erhöhte Anzahl von Intermediaten wird vor allem an Orten mit hoher Energiedichte beobachtet (z.B. im interstellaren Raum und in Motoren). Elektronisch angeregte Zustände der Moleküle können hier durch Teilchenstöße, Strahlung oder sogar thermisch bei sehr hohen Temperaturen angeregt werden. Wie elektronisch angeregte Zustände Reaktionsmechanismen beeinflussen können, ist noch Stand aktueller Forschung. KW - Excited-State Dynamics of Organic Intermediates KW - Intermediate KW - Gas-Phase KW - Femtosekunden KW - Spektroskopie KW - electronisch KW - intermediate KW - gas phase KW - femtosecond KW - laser KW - spectroscopy KW - electronic Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-36075 N1 - Cotutelle: Institut für Physikalische Chemie/Universität Würzburg and Laboratoire Francis Perrin/CEA Saclay ER - TY - THES A1 - Mahnkopf, Sven T1 - Photonic crystal based widely tunable laser diodes and integrated optoelectronic components T1 - Weit abstimmbare Laserdioden und integrierte optoelektronische Bauelemente auf Basis photonischer Kristalle N2 - In a first aspect of this work, the development of photonic crystal based widely tunable laser diodes and their monolithic integration with photonic crystal based passive waveguide and coupler structures is explored theoretically and experimentally. In these devices, the photonic crystal is operated in the photonic bandgap which can be used for the realization of effective reflectors and waveguide structures. Such tunable light sources are of great interest for the development of optical network systems that are based on wavelength division multiplexing. In a second aspect of this work, the operation of a photonic crystal block near the photonic band edge is investigated with respect to the so-called superprism effect. After a few introductory remarks that serve to motivate this work, chapter 3 recapitulates some aspects of semiconductor lasers and photonic crystals that are essential for the understanding of this work so that the reader should be readily equipped with the tools to appreciate the results presented in this work. N2 - In einem ersten Aspekt der vorliegenden Arbeit wird die Entwicklung von weit abstimmbaren Halbleiterlasern auf der Basis photonischer Kristalle sowie deren monolithische Integration mit passiven, auf photonischen Kristallen basierenden Wellenleiter- und Kopplerstrukturen theoretisch und experimentell untersucht. In diesen Bauelementen werden die photonischen Kristalle im Bereich der photonischen Bandlücke betrieben, was zur Realisierung effektiver Reflektoren und Wellenleiterstrukturen ausgenutzt werden kann. Kompakte, weit abstimmbare Halbleiterlaser sind für die Entwicklung von optischen Netzwerksystemen, die auf dem wavelength division multiplexing (WDM) beruhen, von fundamentaler Bedeutung. In einem zweiten Aspekt der Arbeit wird der Betrieb von photonischen Kristallen im Bereich der photonischen Bandkante im Hinblick auf den sogenannten Superprisma-Effekt untersucht. Nach einigen einleitenden Worten, die diese Arbeit motivieren, werden in Kapitel 3 die für das Verständnis der Arbeit wesentlichen Grundlagen von Halbleiterlasern und photonischen Kristallen rekapituliert. KW - Laserdiode KW - Abstimmbarer Laser KW - Photonischer Kristall KW - Photonische Kristalle KW - Laser KW - Superprisma KW - Koppler KW - Photonic crystals KW - laser KW - superprism KW - coupler Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13860 ER -