TY - JOUR A1 - Allert, Stefanie A1 - Förster, Toni M. A1 - Svensson, Carl-Magnus A1 - Richardson, Jonathan P. A1 - Pawlik, Tony A1 - Hebecker, Betty A1 - Rudolphi, Sven A1 - Juraschitz, Marc A1 - Schaller, Martin A1 - Blagojevic, Mariana A1 - Morschhäuser, Joachim A1 - Figge, Marc Thilo A1 - Jacobsen, Ilse D. A1 - Naglik, Julian R. A1 - Kasper, Lydia A1 - Mogavero, Selene A1 - Hube, Bernhard T1 - \(Candida\) \(albicans\)-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers JF - mBio N2 - Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin. IMPORTANCE Candida albicans, usually a harmless fungus colonizing human mucosae, can cause lethal bloodstream infections when it manages to translocate across the intestinal epithelium. This can result from antibiotic treatment, immune dysfunction, or intestinal damage (e.g., during surgery). However, fungal processes may also contribute. In this study, we investigated the translocation process of C. albicans using in vitro cell culture models. Translocation occurs as a stepwise process starting with invasion, followed by epithelial damage and loss of epithelial integrity. The ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein Ece1, is key: C. albicans hyphae, secreting candidalysin, take advantage of a necrotic weakened epithelium to translocate through the intestinal layer. KW - Candida albicans KW - candidalysin KW - host cell damage KW - host cell invasion KW - intestinal barrier KW - necrosis KW - translocation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221084 VL - 9 IS - 3 ER - TY - JOUR A1 - Fan, Sook-Ha A1 - Ebner, Patrick A1 - Reichert, Sebstian A1 - Hertlein, Tobias A1 - Zabel, Susanne A1 - Lankapalli, Aditya Kumar A1 - Nieselt, Kay A1 - Ohlsen, Knut A1 - Götz, Friedrich T1 - MpsAB is important for Staphylococcus aureus virulence and growth at atmospheric CO2 levels JF - Nature Communications N2 - The mechanisms behind carbon dioxide (CO2) dependency in non-autotrophic bacterial isolates are unclear. Here we show that the Staphylococcus aureus mpsAB operon, known to play a role in membrane potential generation, is crucial for growth at atmospheric CO2 levels. The genes mpsAB can complement an Escherichia coli carbonic anhydrase (CA) mutant, and CA from E. coli can complement the S. aureus delta-mpsABC mutant. In comparison with the wild type, S. aureus mps mutants produce less hemolytic toxin and are less virulent in animal models of infection. Homologs of mpsA and mpsB are widespread among bacteria and are often found adjacent to each other on the genome. We propose that MpsAB represents a dissolved inorganic carbon transporter, or bicarbonate concentrating system, possibly acting as a sodium bicarbonate cotransporter. KW - bacterial physiology KW - bacteriology KW - pathogens Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227624 VL - 10 ER - TY - JOUR A1 - Osmanoglu, Özge A1 - Gupta, Shishir K. A1 - Almasi, Anna A1 - Yagci, Seray A1 - Srivastava, Mugdha A1 - Araujo, Gabriel H. M. A1 - Nagy, Zoltan A1 - Balkenhol, Johannes A1 - Dandekar, Thomas T1 - Signaling network analysis reveals fostamatinib as a potential drug to control platelet hyperactivation during SARS-CoV-2 infection JF - Frontiers in Immunology N2 - Introduction Pro-thrombotic events are one of the prevalent causes of intensive care unit (ICU) admissions among COVID-19 patients, although the signaling events in the stimulated platelets are still unclear. Methods We conducted a comparative analysis of platelet transcriptome data from healthy donors, ICU, and non-ICU COVID-19 patients to elucidate these mechanisms. To surpass previous analyses, we constructed models of involved networks and control cascades by integrating a global human signaling network with transcriptome data. We investigated the control of platelet hyperactivation and the specific proteins involved. Results Our study revealed that control of the platelet network in ICU patients is significantly higher than in non-ICU patients. Non-ICU patients require control over fewer proteins for managing platelet hyperactivity compared to ICU patients. Identification of indispensable proteins highlighted key subnetworks, that are targetable for system control in COVID-19-related platelet hyperactivity. We scrutinized FDA-approved drugs targeting indispensable proteins and identified fostamatinib as a potent candidate for preventing thrombosis in COVID-19 patients. Discussion Our findings shed light on how SARS-CoV-2 efficiently affects host platelets by targeting indispensable and critical proteins involved in the control of platelet activity. We evaluated several drugs for specific control of platelet hyperactivity in ICU patients suffering from platelet hyperactivation. The focus of our approach is repurposing existing drugs for optimal control over the signaling network responsible for platelet hyperactivity in COVID-19 patients. Our study offers specific pharmacological recommendations, with drug prioritization tailored to the distinct network states observed in each patient condition. Interactive networks and detailed results can be accessed at https://fostamatinib.bioinfo-wuerz.eu/. KW - signaling network KW - controllability KW - platelet KW - SARS-CoV-2 KW - fostamatinib KW - drug repurposing KW - COVID-19 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-354158 VL - 14 ER - TY - JOUR A1 - Hung, Sophia A1 - Kasperkowitz, Amelie A1 - Kurz, Florian A1 - Dreher, Liane A1 - Diessner, Joachim A1 - Ibrahim, Eslam S. A1 - Schwarz, Stefan A1 - Ohlsen, Knut A1 - Hertlein, Tobias T1 - Next-generation humanized NSG-SGM3 mice are highly susceptible to Staphylococcus aureus infection JF - Frontiers in Immunology N2 - Humanized hemato-lymphoid system mice, or humanized mice, emerged in recent years as a promising model to study the course of infection of human-adapted or human-specific pathogens. Though Staphylococcus aureus infects and colonizes a variety of species, it has nonetheless become one of the most successful human pathogens of our time with a wide armory of human-adapted virulence factors. Humanized mice showed increased vulnerability to S. aureus compared to wild type mice in a variety of clinically relevant disease models. Most of these studies employed humanized NSG (NOD-scid IL2Rgnull) mice which are widely used in the scientific community, but show poor human myeloid cell reconstitution. Since this immune cell compartment plays a decisive role in the defense of the human immune system against S. aureus, we asked whether next-generation humanized mice, like NSG-SGM3 (NOD-scid IL2Rgnull-3/GM/SF) with improved myeloid reconstitution, would prove to be more resistant to infection. To our surprise, we found the contrary when we infected humanized NSG-SGM3 (huSGM3) mice with S. aureus: although they had stronger human immune cell engraftment than humanized NSG mice, particularly in the myeloid compartment, they displayed even more pronounced vulnerability to S. aureus infection. HuSGM3 mice had overall higher numbers of human T cells, B cells, neutrophils and monocytes in the blood and the spleen. This was accompanied by elevated levels of pro-inflammatory human cytokines in the blood of huSGM3 mice. We further identified that the impaired survival of huSGM3 mice was not linked to higher bacterial burden nor to differences in the murine immune cell repertoire. Conversely, we could demonstrate a correlation of the rate of humanization and the severity of infection. Collectively, this study suggests a detrimental effect of the human immune system in humanized mice upon encounter with S. aureus which might help to guide future therapy approaches and analysis of virulence mechanisms. KW - humanized mice KW - Staphylococcus aureus KW - MRSA KW - NSG KW - NSG-SGM3 KW - staphylococcal abscess KW - Staphylococcus aureus immune response KW - humanized hemato-lymphoid mice Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-306966 VL - 14 ER - TY - JOUR A1 - Bruchhagen, Christin A1 - Jarick, Marcel A1 - Mewis, Carolin A1 - Hertlein, Tobias A1 - Niemann, Silke A1 - Ohlsen, Knut A1 - Peters, Georg A1 - Planz, Oliver A1 - Ludwig, Stephan A1 - Ehrhardt, Christina T1 - Metabolic conversion of CI-1040 turns a cellular MEK-inhibitor into an antibacterial compound JF - Scientific Reports N2 - Influenza virus (IV) infections cause severe respiratory illnesses that can be complicated by bacterial super-infections. Previously, we identified the cellular Raf-MEK-ERK cascade as a promising antiviral target. Inhibitors of MEK, such as CI-1040, showed potent antiviral activity. However, it remained unclear if this inhibitor and its active form, ATR-002, might sensitize host cells to either IV or secondary bacterial infections. To address these questions, we studied the anti-pathogen activity of ATR-002 in comparison to CI-1040, particularly, its impact on Staphylococcus aureus (S. aureus), which is a major cause of IV super-infections. We analysed IV and S. aureus titres in vitro during super-infection in the presence and absence of the drugs and characterized the direct impact of ATR-002 on bacterial growth and phenotypic changes. Importantly, neither CI-1040 nor ATR-002 treatment led to increased bacterial titres during super-infection, indicating that the drug does not sensitize cells for bacterial infection. In contrast, we rather observed reduced bacterial titres in presence of ATR-002. Surprisingly, ATR-002 also led to reduced bacterial growth in suspension cultures, reduced stress- and antibiotic tolerance without resistance induction. Our data identified for the first time that a particular MEK-inhibitor metabolite exhibits direct antibacterial activity, which is likely due to interference with the bacterial PknB kinase/Stp phosphatase signalling system. KW - antimicrobials KW - pathogens Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221648 VL - 8 ER - TY - JOUR A1 - Reuter, Christian A1 - Hauf, Laura A1 - Imdahl, Fabian A1 - Sen, Rituparno A1 - Vafadarnejad, Ehsan A1 - Fey, Philipp A1 - Finger, Tamara A1 - Jones, Nicola G. A1 - Walles, Heike A1 - Barquist, Lars A1 - Saliba, Antoine-Emmanuel A1 - Groeber-Becker, Florian A1 - Engstler, Markus T1 - Vector-borne Trypanosoma brucei parasites develop in artificial human skin and persist as skin tissue forms JF - Nature Communications N2 - Transmission of Trypanosoma brucei by tsetse flies involves the deposition of the cell cycle-arrested metacyclic life cycle stage into mammalian skin at the site of the fly’s bite. We introduce an advanced human skin equivalent and use tsetse flies to naturally infect the skin with trypanosomes. We detail the chronological order of the parasites’ development in the skin by single-cell RNA sequencing and find a rapid activation of metacyclic trypanosomes and differentiation to proliferative parasites. Here we show that after the establishment of a proliferative population, the parasites enter a reversible quiescent state characterized by slow replication and a strongly reduced metabolism. We term these quiescent trypanosomes skin tissue forms, a parasite population that may play an important role in maintaining the infection over long time periods and in asymptomatic infected individuals. KW - mechanisms of disease KW - parasitology KW - transcriptomics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358142 VL - 14 ER - TY - JOUR A1 - Groh, Janos A1 - Abdelwahab, Tassnim A1 - Kattimani, Yogita A1 - Hörner, Michaela A1 - Loserth, Silke A1 - Gudi, Viktoria A1 - Adalbert, Robert A1 - Imdahl, Fabian A1 - Saliba, Antoine-Emmanuel A1 - Coleman, Michael A1 - Stangel, Martin A1 - Simons, Mikael A1 - Martini, Rudolf T1 - Microglia-mediated demyelination protects against CD8\(^+\) T cell-driven axon degeneration in mice carrying PLP defects JF - Nature Communications N2 - Axon degeneration and functional decline in myelin diseases are often attributed to loss of myelin but their relation is not fully understood. Perturbed myelinating glia can instigate chronic neuroinflammation and contribute to demyelination and axonal damage. Here we study mice with distinct defects in the proteolipid protein 1 gene that develop axonal damage which is driven by cytotoxic T cells targeting myelinating oligodendrocytes. We show that persistent ensheathment with perturbed myelin poses a risk for axon degeneration, neuron loss, and behavioral decline. We demonstrate that CD8\(^+\) T cell-driven axonal damage is less likely to progress towards degeneration when axons are efficiently demyelinated by activated microglia. Mechanistically, we show that cytotoxic T cell effector molecules induce cytoskeletal alterations within myelinating glia and aberrant actomyosin constriction of axons at paranodal domains. Our study identifies detrimental axon-glia-immune interactions which promote neurodegeneration and possible therapeutic targets for disorders associated with myelin defects and neuroinflammation. KW - diseases of the nervous system KW - myelin biology and repair KW - neuroimmunology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357641 VL - 14 ER - TY - JOUR A1 - McFleder, Rhonda L. A1 - Makhotkina, Anastasiia A1 - Groh, Janos A1 - Keber, Ursula A1 - Imdahl, Fabian A1 - Peña Mosca, Josefina A1 - Peteranderl, Alina A1 - Wu, Jingjing A1 - Tabuchi, Sawako A1 - Hoffmann, Jan A1 - Karl, Ann-Kathrin A1 - Pagenstecher, Axel A1 - Vogel, Jörg A1 - Beilhack, Andreas A1 - Koprich, James B. A1 - Brotchie, Jonathan M. A1 - Saliba, Antoine-Emmanuel A1 - Volkmann, Jens A1 - Ip, Chi Wang T1 - Brain-to-gut trafficking of alpha-synuclein by CD11c\(^+\) cells in a mouse model of Parkinson’s disease JF - Nature Communications N2 - Inflammation in the brain and gut is a critical component of several neurological diseases, such as Parkinson’s disease (PD). One trigger of the immune system in PD is aggregation of the pre-synaptic protein, α-synuclein (αSyn). Understanding the mechanism of propagation of αSyn aggregates is essential to developing disease-modifying therapeutics. Using a brain-first mouse model of PD, we demonstrate αSyn trafficking from the brain to the ileum of male mice. Immunohistochemistry revealed that the ileal αSyn aggregations are contained within CD11c+ cells. Using single-cell RNA sequencing, we demonstrate that ileal CD11c\(^+\) cells are microglia-like and the same subtype of cells is activated in the brain and ileum of PD mice. Moreover, by utilizing mice expressing the photo-convertible protein, Dendra2, we show that CD11c\(^+\) cells traffic from the brain to the ileum. Together these data provide a mechanism of αSyn trafficking between the brain and gut. KW - antigen-presenting cells KW - neuroimmunology KW - Parkinson's disease Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357696 VL - 14 ER - TY - JOUR A1 - Maichl, Daniela Simone A1 - Kirner, Julius Arthur A1 - Beck, Susanne A1 - Cheng, Wen-Hui A1 - Krug, Melanie A1 - Kuric, Martin A1 - Ade, Carsten Patrick A1 - Bischler, Thorsten A1 - Jakob, Franz A1 - Hose, Dirk A1 - Seckinger, Anja A1 - Ebert, Regina A1 - Jundt, Franziska T1 - Identification of NOTCH-driven matrisome-associated genes as prognostic indicators of multiple myeloma patient survival JF - Blood Cancer Journal N2 - No abstract available. KW - cancer microenvironment KW - myeloma Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357598 VL - 13 ER - TY - JOUR A1 - Lavysh, Daria A1 - Sokolova, Maria A1 - Slashcheva, Marina A1 - Förstner, Konrad U. A1 - Severinov, Konstantin T1 - Transcription profiling of "bacillus subtilis" cells infected with AR9, a giant phage encoding two multisubunit RNA polymerases JF - mBio N2 - Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis. Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5′ ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. KW - Bacteriaophage AR9 KW - Transcription profiling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181810 VL - 8 IS - 1 ER -