TY - JOUR A1 - Schmitt, Martin A1 - Moras, Paolo A1 - Bihlmayer, Gustav A1 - Cotsakis, Ryan A1 - Vogt, Matthias A1 - Kemmer, Jeannette A1 - Belabbes, Abderrezak A1 - Sheverdyaeva, Polina M. A1 - Kundu, Asish K. A1 - Carbone, Carlo A1 - Blügel, Stefan A1 - Bode, Matthias T1 - Indirect chiral magnetic exchange through Dzyaloshinskii–Moriya-enhanced RKKY interactions in manganese oxide chains on Ir(100) JF - Nature Communications N2 - Localized electron spins can couple magnetically via the Ruderman–Kittel–Kasuya–Yosida interaction even if their wave functions lack direct overlap. Theory predicts that spin–orbit scattering leads to a Dzyaloshinskii–Moriya type enhancement of this indirect exchange interaction, giving rise to chiral exchange terms. Here we present a combined spin-polarized scanning tunneling microscopy, angle-resolved photoemission, and density functional theory study of MnO2 chains on Ir(100). Whereas we find antiferromagnetic Mn–Mn coupling along the chain, the inter-chain coupling across the non-magnetic Ir substrate turns out to be chiral with a 120° rotation between adjacent MnO2 chains. Calculations reveal that the Dzyaloshinskii–Moriya interaction results in spin spirals with a periodicity in agreement with experiment. Our findings confirm the existence of indirect chiral magnetic exchange, potentially giving rise to exotic phenomena, such as chiral spin-liquid states in spin ice systems or the emergence of new quasiparticles. KW - magnetic properties and materials KW - surfaces, interfaces and thin films Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230986 VL - 10 ER - TY - JOUR A1 - Hsu, Pin-Jui A1 - Kügel, Jens A1 - Kemmer, Jeannette A1 - Toldin, Francesco Parisen A1 - Mauerer, Tobias A1 - Vogt, Matthias A1 - Assaad, Fakher A1 - Bode, Matthias T1 - Coexistence of charge and ferromagnetic order in fcc Fe JF - Nature Communications N2 - Phase coexistence phenomena have been intensively studied in strongly correlated materials where several ordered states simultaneously occur or compete. Material properties critically depend on external parameters and boundary conditions, where tiny changes result in qualitatively different ground states. However, up to date, phase coexistence phenomena have exclusively been reported for complex compounds composed of multiple elements. Here we show that charge- and magnetically ordered states coexist in double-layer Fe/Rh(001). Scanning tunnelling microscopy and spectroscopy measurements reveal periodic charge-order stripes below a temperature of 130 K. Close to liquid helium temperature, they are superimposed by ferromagnetic domains as observed by spin-polarized scanning tunnelling microscopy. Temperature-dependent measurements reveal a pronounced cross-talk between charge and spin order at the ferromagnetic ordering temperature about 70 K, which is successfully modelled within an effective Ginzburg–Landau ansatz including sixth-order terms. Our results show that subtle balance between structural modifications can lead to competing ordering phenomena. KW - ferromagnetism KW - phase transitions and critical phenomena KW - coexistence Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173969 VL - 7 ER -