TY - THES A1 - Altmann, Stephan T1 - Characterization of Metabolic Glycoengineering in Mesenchymal Stromal Cells for its Application in thermoresponsive Bioinks T1 - Charakterisierung von Metabolic Glycoengineering in mesenchymalen Stromazellen für die Anwendung in thermoresponsiven Biotinten N2 - This work developed during the first funding period of the subproject B05 in the framework of the interdisciplinary research consortium TRR 225 ‘From the Fundamentals of Biofabrication toward functional Tissue Models’ and was part of a cooperation between the Orthopedic Department represented by Prof. Dr. Regina Ebert and the Institute of Organic Chemistry represented by Prof. Dr. Jürgen Seibel. This project dealed with cellular behavior during the bioprinting process and how to influence it by modifying the cell glycocalyx with functional target molecules. The focus was on the impact of potential shear stress, that cells experience when they get processed in thermoresponsive bioinks, and a way to increase the cell stiffness via metabolic glycoengineering to attenuate shear forces. For the characterization of the metabolic glycoengineering, four different peracetylated and four non-acetylated modified monosaccharides (two mannose and two sialic acid sugars) were tested in primary human mesenchymal stromal cells (hMSC) and telomerase-immortalized hMSC (hMSC-TERT). Viability results demonstrated a dose-dependent correlation for all sugars, at which hMSC-TERT seemed to be more susceptible leading to lower viability rates. The assessment of the incorporation efficiencies was performed by click chemistry using fluorescent dyes and revealed also a dose-dependent correlation for all mannose and sialic acid sugars, while glucose and galactose variants were not detected in the glycocalyx. However, incorporation efficiencies were highest when using mannose sugars in the primary hMSC. A subsequent analysis of the temporal retention of the incorporated monosaccharides showed a constant declining fluorescence signal up to 6 d for azido mannose in hMSC-TERT, whereas no signal could be detected for alkyne mannose after 2 d. Investigation of the differentiation potential and expression of different target genes revealed no impairment after incubation with mannose sugars, indicating a normal phenotype for hMSC-TERT. Following the successful establishment of the method, either a coumarin derivative or an artificial galectin 1 ligand were incorporated into the cell glycocalyx of hMSC-TERT as functional target molecule. The biophysical analysis via shear flow deformation cytometry revealed a slightly increased cell stiffness and lowered fluidity for both molecules. A further part of this project aimed to control lectin-mediated cell adhesion by artificial galectin 1 ligands. As that hypothesis was settled in the work group of Prof. Dr. Jürgen Seibel, this work supported with an initial characterization of galectin 1 as part of the hMSC biology. A stable galectin 1 expression at gene and protein level in both hMSC and hMSC-TERT could be confirmed, at which immunocytochemical stainings could detect the protein only in the glycocalyx. The treatment of hMSC-TERT with a galectin 1 ligand in different concentrations did not show an altered gene expression of galectin 1. However, these first data in addition to the investigation of stiffness confirmed the applicability of specific and artificial IV galectin 1 ligands in biofabrication approaches to alter cell properties of hMSC. To conclude, metabolic glycoengineering has been successfully implemented in hMSC and hMSC-TERT to introduce glycocalyx modifications which reside there for several days. A proof of concept was carried out by the increase of cell stiffness and fluidity by the incorporation of a coumarin derivative or an artificial galectin 1 ligand. For the characterization of shear stress impact on cells after printing in thermoresponsive bioinks, the processing of hMSC-TERT (mixing or additionally printing) with Pluronic F127 or Polyoxazoline-Polyoxazine (POx-POzi) polymer solution was investigated. While there were no changes in viability when using POx-POzi bioink, processing with Pluronic F127 indicated slightly lower viability and increased apoptosis activity. Assessment of cellular responses to potential shear stress showed no reorganization of the cytoskeleton independent of the bioink, but highly increased expression of the mechanoresponsive proto-oncogene c Fos which was more pronounced when using Pluronic F127 and just mixed with the bioinks. Interestingly, processing of the mechanoresponsive reporter cell line hMSC-TERT-AP1 revealed slightly elevated mechanotransduction activity when using POx-POzi polymer and just mixed with the bioinks as well. In conclusion, hMSC-TERT embedded in thermoresponsive bioinks might shortly experience shear stress during the printing process, but that did not lead to remarkable cell damage likely due to the rheological properties of the bioinks. Furthermore, the printing experiments also suggested that cells do not sense more shear stress when additionally printed. N2 - Diese Arbeit entstand aus dem Projekt B05 während der ersten Förderperiode im Rahmen des interdisziplinären Sonderforschungsbereiches TRR 225 „Von den Grundlagen der Biofabrikation zu funktionalen Gewebemodellen“ und beinhaltete eine Kooperation zwischen dem Lehrstuhl für Orthopädie repräsentiert durch Prof. Dr. Regina Ebert und dem Institut für Organische Chemie repräsentiert durch Prof. Dr. Jürgen Seibel. Das Projekt beschäftigte sich mit den Auswirkungen des 3D Drucks auf Zellen während und nach dem Druck mit thermoresponsiven Biotinten. Hierbei lag der Fokus auf Scherkräften, die Zellen während des Drucks erfahren, und der Möglichkeit, deren nachteilige Auswirkungen durch gezielte Erhöhung der Zellsteifigkeit via Metabolic Glycoengineering zu minimieren. Zur Etablierung dieser Methode wurden vier azetylierte sowie vier nicht-azetylierte modifizierte Einfachzucker (zwei Mannosen und zwei Sialinsäuren) hinsichtlich ihrer Zellkompatibilität und Einbaurate in primären humanen mesenchymalen Stromazellen (hMSC) und Telomerase-immortalisierten hMSC (hMSC-TERT) charakterisiert. Bei der Viabilität zeigte sich für alle untersuchten Zucker ein konzentrationsabhängiges Verhalten, wobei die hMSC-TERT generell empfindlicher reagierten. Eine Untersuchung von verschiedenen Zielgenen nach Zuckerinkubation gab keine Hinweise auf biologisch veränderte Expressionsmuster und auch das phänotypische Differenzierungspotenzial (adipogen und osteogen) blieb erhalten. Der Einbau der modifizierten Zucker in Proteoglykane sowie Glykoproteine der Glykokalyx wurde mikroskopisch mittels Fluoreszenzfarbstoffen charakterisiert. Dabei zeigte sich ebenfalls ein konzentrationsabhängiges Verhalten für alle Mannosen und Sialinsäuren, wohingegen die Glukose- und Galaktosevarianten nicht nachgewiesen werden konnten. Die Mannosezucker zeigten die höchsten Einbauraten, welche in primären hMSC noch stärker ausfielen als in hMSC-TERT. Ein Langzeitversuch zur Beurteilung der zeitlichen Stabilität der Glykokalyxmodifikation konnte für die azetylierte Azidomannose ein abnehmendes Fluoreszenzsignal bis zum sechsten Tag nach der Klickreaktion ermitteln. Im Gegensatz dazu konnte die azetylierte Alkinmannose bereits ab dem zweiten Tag nicht mehr nachgewiesen werden. Nach der erfolgreichen Optimierung der Methodik wurde der Effekt eines Kumarinderivates oder eines künstlichen Galektin 1 Liganden auf die Zellsteifigkeit sowie die -fluidität mit Hilfe der Deformationszytometrie untersucht. Die Modifikation der Glykokalyx mit beiden untersuchten Molekülen führte zu einer leichten Erhöhung der Steifigkeit in Kombination mit einer leicht erniedrigten Fluidität. In einem weiteren Teil des Projekts sollte die Lektin-vermittelte Adhäsion von Zellen an Polymerstränge initiiert werden, indem sie mit künstlichen Galektin 1 Liganden modifiziert werden. Da diese Hypothese in der Forschungsgruppe von Prof. Dr. Jürgen Seibel bearbeitet wurde, unterstützte diese Arbeit mit einer anfänglichen Charakterisierung von Galektin 1 als Teil der hMSC Zellbiologie. In hMSC und hMSC-TERT konnte eine VI stabile Expression auf Gen- und Proteinebene nachwiesen werden, wobei das Lektin in der Glykokalyx lokalisiert war. Ein Inkubationsversuch mit einem spezifischen Liganden zeigte in hMSC-TERT unabhängig von der Konzentration keine veränderte Galektin 1 Genexpression. In Verbindung mit den Steifigkeitsuntersuchungen bestätigt diese anfängliche Charakterisierung die Anwendbarkeit von künstlichen Galektin 1 Liganden in der Biofabrikation um hMSC zu modifizieren. Somit konnte gezeigt werden, dass Metabolic Glycoengineering sich für die gezielte Einbringung von Molekülen in die Zellglykokalyx von primären hMSC sowie der entsprechenden TERT-Zelllinie zur mittelfristigen Modifikation eignet. Dies wurde durch einen funktionellen Ansatz bestätigt, indem die Zellsteifigkeit und -fluidität durch den Einsatz zwei verschiedener Moleküle erwartungsgemäß beeinflusst wurden. Für die Charakterisierung der Scherstressauswirkungen auf Zellen nach 3D Druck in thermoresponsiven Biotinten wurden hMSC und hMSC-TERT in Pluronic F127 oder Polyoxazolin-Polyoxazin (POx-POzi) Polymerlösung prozessiert (gemischt oder zusätzlich verdruckt) und direkt danach analysiert. Während letztere die Viabilität nicht verschlechterte, zeigten hMSC-TERT nach Verarbeitung in Pluronic F127 eine leicht erniedrigte Viabilität sowie leicht erhöhte Apoptoseraten. Im Zuge von Analysen der Mechanotransduktion und deren Auswirkungen konnte unabhängig von der Biotinte sowie der Behandlung kein Umbau des Zytoskeletts immunzytochemisch nachgewiesen werden. Im Gegensatz dazu zeigten Genexpressionsanalysen eine starke Hochregulierung des mechanoresponsiven Proto-Onkogens c Fos unter allen Bedingungen, wobei diese stärker ausfiel bei Verwendung der Pluronic F127 Biotinte und nur nach Mischen (gilt für beide Biotinten). Um den Scherstress quantitativ zu beurteilen, wurde die Reporterzelllinie hMSC-TERT-AP1 verwendet, welche das Auslesen der Mechanotransduktion durch eine gekoppelte Luziferase-Proteinexpression ermöglicht. Interessanterweise zeigte sich eine leicht erhöhte Luziferaseaktivität nur nach Verarbeitung mit der POx-POzi Polymerlösung, welche stärker ausfiel wenn die Zellen mit der Biotinte lediglich gemischt wurden. Zusammengenommen bestätigten die Ergebnisse die zelluläre Wahrnehmung von Scherstress in thermoresponsiven Biotinten, allerdings scheint dieser nur schwache Auswirkungen auf die Zellen zu haben, was auf die rheologischen Eigenschaften beider untersuchten Biotinten zurückgeführt werden kann. Die Druckergebnisse legten außerdem nahe, dass die Zellen nicht mehr Scherstress erfahren, wenn sie zusätzlich verdruckt wurden. KW - Glykobiologie KW - Glykokalyx KW - Tissue Engineering KW - Galectine KW - Metabolic Glycoengineering KW - Biofabrication KW - Galectin 1 KW - Glycocalyx KW - Shear Stress KW - Scherstress Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-291003 ER - TY - THES A1 - Alzheimer, Mona T1 - Development of tissue-engineered three-dimensional infection models to study pathogenesis of \(Campylobacter\) \(jejuni\) T1 - Entwicklung dreidimensionaler Infektionsmodelle basierend auf Gewebezüchtung zur Erforschung der Pathogenese von \(Campylobacter\) \(jejuni\) N2 - Infectious diseases caused by pathogenic microorganisms are one of the largest socioeconomic burdens today. Although infectious diseases have been studied for decades, in numerous cases, the precise mechanisms involved in the multifaceted interaction between pathogen and host continue to be elusive. Thus, it still remains a challenge for researchers worldwide to develop novel strategies to investigate the molecular context of infectious diseases in order to devise preventive or at least anti-infective measures. One of the major drawbacks in trying to obtain in-depth knowledge of how bacterial pathogens elicit disease is the lack of suitable infection models to authentically mimic the disease progression in humans. Numerous studies rely on animal models to emulate the complex temporal interactions between host and pathogen occurring in humans. While they have greatly contributed to shed light on these interactions, they require high maintenance costs, are afflicted with ethical drawbacks, and are not always predictive for the infection outcome in human patients. Alternatively, in-vitro two-dimensional (2D) cell culture systems have served for decades as representatives of human host environments to study infectious diseases. These cell line-based models have been essential in uncovering virulence-determining factors of diverse pathogens as well as host defense mechanisms upon infection. However, they lack the morphological and cellular complexity of intact human tissues, limiting the insights than can be gained from studying host-pathogen interactions in these systems. The focus of this thesis was to establish and innovate intestinal human cell culture models to obtain in-vitro reconstructed three-dimensional (3D) tissue that can faithfully mimic pathogenesis-determining processes of the zoonotic bacterium Campylobacter jejuni (C. jejuni). Generally employed for reconstructive medicine, the field of tissue engineering provides excellent tools to generate organ-specific cell culture models in vitro, realistically recapitulating the distinctive architecture of human tissues. The models employed in this thesis are based on decellularized extracellular matrix (ECM) scaffolds of porcine intestinal origin. Reseeded with intestinal human cells, application of dynamic culture conditions promoted the formation of a highly polarized mucosal epithelium maintained by functional tight and adherens junctions. While most other in-vitro infection systems are limited to a flat monolayer, the tissue models developed in this thesis can display the characteristic 3D villi and crypt structure of human small intestine. First, experimental conditions were established for infection of a previously developed, statically cultivated intestinal tissue model with C. jejuni. This included successful isolation of bacterial colony forming units (CFUs), measurement of epithelial barrier function, as well as immunohistochemical and histological staining techniques. In this way, it became possible to follow the number of viable bacteria during the infection process as well as their translocation over the polarized epithelium of the tissue model. Upon infection with C. jejuni, disruption of tight and adherens junctions could be observed via confocal microscopy and permeability measurements of the epithelial barrier. Moreover, C. jejuni wildtype-specific colonization and barrier disruption became apparent in addition to niche-dependent bacterial localization within the 3D microarchitecture of the tissue model. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D host environment deviated from those obtained with conventional in-vitro 2D monolayers but mimicked observations made in vivo. Furthermore, a genome-wide screen of a C. jejuni mutant library revealed significant differences for bacterial factors required or dispensable for interactions with unpolarized host cells or the highly prismatic epithelium provided by the intestinal tissue model. Elucidating the role of several previously uncharacterized factors specifically important for efficient colonization of a 3D human environment, promises to be an intriguing task for future research. At the frontline of the defense against invading pathogens is the protective, viscoelastic mucus layer overlying mucosal surfaces along the human gastrointestinal tract (GIT). The development of a mucus-producing 3D tissue model in this thesis was a vital step towards gaining a deeper understanding of the interdependency between bacterial pathogens and host-site specific mucins. The presence of a mucus layer conferred C. jejuni wildtype-specific protection against epithelial barrier disruption by the pathogen and prevented a high bacterial burden during the course of infection. Moreover, results obtained in this thesis provide evidence in vitro that the characteristic corkscrew morphology of C. jejuni indeed grants a distinct advantage in colonizing mucous surfaces. Overall, the results obtained within this thesis highlight the strength of the tissue models to combine crucial features of native human intestine into accessible in-vitro infection models. Translation of these systems into infection research demonstrated their ability to expose in-vivo like infection outcomes. While displaying complex organotypic architecture and highly prismatic cellular morphology, these tissue models still represent an imperfect reflection of human tissue. Future advancements towards inclusion of human primary and immune cells will strive for even more comprehensive model systems exhibiting intricate multicellular networks of in-vivo tissue. Nevertheless, the work presented in this thesis emphasizes the necessity to investigate host-pathogen interactions in infection models authentically mimicking the natural host environment, as they remain among the most vital parts in understanding and counteracting infectious diseases. N2 - In der heutigen Zeit tragen insbesondere durch pathogene Mikroorganismen ausgelöste Infektionskrankheiten zur sozioökonomischen Belastung bei. Obwohl bereits jahrzehntelang an der Entstehung von Infektionskrankheiten geforscht wird, bleiben in zahlreichen Fällen die genauen Mechanismen, welche an den vielfältigen Interaktionen zwischen Pathogen und Wirt beteiligt sind, unbeschrieben. Gerade deshalb bleibt es für Wissenschaftler weltweit eine Herausforderung, neue Strategien zur Untersuchung des molekularen Kontexts von Infektionskrankheiten zu entwickeln, um präventive oder zumindest anti-infektive Maßnahmen ergreifen zu können. In den meisten Fällen ist jedoch das Fehlen geeigneter Infektionsmodelle, mit denen der Krankheitsverlauf im Menschen authentisch nachgestellt werden kann, eines der größten Hindernisse um detailliertes Wissen darüber gewinnen zu können wie bakterielle Pathogene die Krankheit auslösen. Zahlreiche Studien sind dabei auf Tiermodelle angewiesen, um die komplexen zeitlichen Abläufe zwischen Wirt und Pathogen im menschlichen Körper nachzuahmen. Während diese Modelle in hohem Maß dazu beigetragen haben, Aufschluss über diese Abläufe zu geben, sind sie doch sehr kostenintensiv, mit ethischen Bedenken behaftet und können nicht immer die Folgen einer Infektion im menschlichen Patienten vorhersagen. Seit Jahrzehnten werden daher alternativ in-vitro 2D Zellkultursysteme eingesetzt, um den Verlauf von Infektionskrankheiten zu erforschen, welche die Bedingungen im menschlichen Wirt wiederspiegeln sollen. Diese auf Zelllinien basierenden Modelle sind essentiell in der Entdeckung von Virulenzfaktoren diverser Pathogene, aber auch in der Aufklärung von wirtsspezifischen Abwehrmechanismen. Dennoch fehlt ihnen die morphologische und zelluläre Komplexität von intaktem menschlichen Gewebe. Dadurch sind die Erkenntnisse, die mit diesen Systemen über Infektionsverläufe gewonnen werden können, limitiert. Die vorgelegte Arbeit konzentriert sich auf die Etablierung und Weiterentwicklung intestinaler, humaner Zellkulturmodelle, um dreidimensionales Gewebe in vitro zu rekonstruieren mit dem Ziel, Pathogenese-beeinflussende Prozesse des zoonotischen Bakteriums C. jejuni nachzustellen. Das Fachgebiet der Gewebezüchtung wird üblicherweise für rekonstruktive Medizin eingesetzt und bietet exzellente Mittel zur in-vitro Herstellung organspezifischer Zellkulturmodelle, welche die unverkennbare Mikroarchitektur humanen Gewebes realistisch nachempfinden können. Die in dieser Arbeit verwendeten Modelle basieren auf einem extrazellulären Matrixgerüst, das aus der Dezellularisierung von Schweinedarm gewonnen wurde. Durch die Wiederbesiedelung mit human Kolonzellen und der Kultivierung unter dynamischen Bedingungen entwickelte sich ein hochpolarisiertes mucosales Epithel, das durch funktionale Zell-Zell-Kontakte (tight und adherens junctions) aufrechterhalten wird. Während andere in-vitro Infektionssysteme meist durch die Präsenz einer flachen Zellschicht limitiert werden, entwickelt das in dieser Arbeit eingeführte Gewebemodell die für den menschlichen Dünndarm charakteristische Architektur aus Villi und Krypten. Zunächst wurden experimentelle Bedingungen für die Infektion eines zuvor entwickelten, statisch kultivierten Dünndarmmodells mit C. jejuni etabliert. Dies beinhaltete die erfolgreiche Isolierung koloniebildender Einheiten, die Messung der epithelialen Barrierefunktion, sowie immunhistochemische und histologische Färbetechniken. Dadurch konnte die Anzahl der Bakterien sowie deren Translokalisierung über das polarisierte Epithel während des Infektionsprozesses nachvollzogen werden. Außerdem konnte die Beeinträchtigung von Zell-Zell-Kontakten durch konfokale Mikroskopie und Permeabilitätsmessungen der epithelialen Barriere beobachtet werden. Neben der Bestimmung der Kolonisierungsrate von C. jejuni Isolaten und der dadurch hervorgerufenen spezifischen Zerstörung der epithelialen Barriere konnten die Bakterien auch innerhalb der 3D Mikroarchitektur des Gewebemodells lokalisiert werden. Außerdem konnte im Rahmen der 3D Gewebeumgebung beobachtet werden, dass Pathogenese-relevante Phänotypen von C. jejuni Mutantenstämmen im Vergleich zu konventionellen in-vitro 2D Zellschichten abwichen, diese aber dafür mit den in-vivo gemachten Beobachtungen übereinstimmten. Darüber hinaus wies die genomweite Suche einer C. jejuni Mutantenbibliothek signifikante Unterschiede zwischen bakteriellen Faktoren, die für die Interaktion mit nicht polarisierten Wirtszellen oder dem hochprismatischen Epithel des Gewebemodells bedeutsam oder entbehrlich waren, auf. Die Aufklärung der Funktion einiger bisher nicht charakterisierter Faktoren, die zu einer effizienten Kolonisierung menschlichen Gewebes beitragen, verspricht eine faszinierende Aufgabe für die zukünftige Forschung zu werden. Die vorderste Verteidigungslinie gegen eindringende Pathogene bildet die schützende, viskoelastische Mukusschicht, die mukosale Oberflächen entlang des menschlichen Gastrointestinaltrakts überzieht. Mit der Entwicklung eines mukusproduzierenden Gewebemodells in der hier vorgelegten Arbeit gelang ein entscheidender Schritt zur Erforschung der Wechselbeziehungen zwischen bakteriellen Pathogenen und wirtsspezifischen Muzinen. Während des Infektionsverlaufs wurde das unterliegende Epithel durch die Anwesenheit der Mukusschicht vor der Zerstörung durch die Mikroben geschützt und eine erhöhte bakterielle Belastung verhindert. Darüber hinaus liefern die Resultate dieser Arbeit einen in-vitro Nachweis für den bakteriellen Vorteil einer spiralförmigen Morphologie, um muköse Oberflächen zu besiedeln. Zusammenfassend unterstreicht diese Arbeit das Potential der hier entwickelten Gewebemodelle, entscheidende Eigenschaften des menschlichen Darms in einem leicht zugänglichen in-vitro Infektionsmodell zu vereinigen. Der Einsatz dieser Modelle im Rahmen der Infektionsforschung bewies deren Fähigkeit in-vivo beobachtete Infektionsverläufe widerzuspiegeln. Während diese Infektionsmodelle bereits organotypische Architektur und hochprismatische Zellmorphologie aufweisen, ist ihre Darstellung von menschlichem Gewebe noch nicht perfekt. Durch den Einsatz von humanen Primär- und Immunzellen wird es in Zukunft möglich sein, noch umfassendere Modellsysteme zu entwickeln, die komplexe multizelluläre Netzwerke von in-vivo Geweben aufweisen. Nichtsdestotrotz verdeutlicht die hier vorgelegte Arbeit wie wichtig es ist, die Interaktionen zwischen Wirt und Pathogen innerhalb von Infektionsmodellen zu erforschen, welche die natürliche Wirtsumgebung wiedergeben. Dies spielt eine entscheidende Rolle, um die Entstehung von Infektionskrankheiten nachvollziehen und ihnen entgegenwirken zu können. KW - Campylobacter jejuni KW - Tissue Engineering KW - Small RNA KW - 3D tissue model KW - Bacterial infection KW - 3D Gewebemodelle KW - Bakterielle Infektion KW - 3D cell culture KW - Infection models Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193440 ER - TY - THES A1 - Andelovic, Kristina T1 - Characterization of arterial hemodynamics using mouse models of atherosclerosis and tissue-engineered artery models T1 - Charakterisierung arterieller Hämodynamiken in atherosklerotischen Mausmodellen und tissue-engineerten Arterienmodellen N2 - Within this thesis, three main approaches for the assessment and investigation of altered hemodynamics like wall shear stress, oscillatory shear index and the arterial pulse wave velocity in atherosclerosis development and progression were conducted: 1. The establishment of a fast method for the simultaneous assessment of 3D WSS and PWV in the complete murine aortic arch via high-resolution 4D-flow MRI 2. The utilization of serial in vivo measurements in atherosclerotic mouse models using high-resolution 4D-flow MRI, which were divided into studies describing altered hemodynamics in late and early atherosclerosis 3. The development of tissue-engineered artery models for the controllable application and variation of hemodynamic and biologic parameters, divided in native artery models and biofabricated artery models, aiming for the investigation of the relationship between atherogenesis and hemodynamics Chapter 2 describes the establishment of a method for the simultaneous measurement of 3D WSS and PWV in the murine aortic arch at, using ultra high-field MRI at 17.6T [16], based on the previously published method for fast, self-navigated wall shear stress measurements in the murine aortic arch using radial 4D-phase contrast MRI at 17.6 T [4]. This work is based on the collective work of Dr. Patrick Winter, who developed the method and the author of this thesis, Kristina Andelovic, who performed the experiments and statistical analyses. As the method described in this chapter is basis for the following in vivo studies and undividable into the sub-parts of the contributors without losing important information, this chapter was not split into the single parts to provide fundamental information about the measurement and analysis methods and therefore better understandability for the following studies. The main challenge in this chapter was to overcome the issue of the need for a high spatial resolution to determine the velocity gradients at the vascular wall for the WSS quantification and a high temporal resolution for the assessment of the PWV without prolonging the acquisition time due to the need for two separate measurements. Moreover, for a full coverage of the hemodynamics in the murine aortic arch, a 3D measurement is needed, which was achieved by utilization of retrospective navigation and radial trajectories, enabling a highly flexible reconstruction framework to either reconstruct images at lower spatial resolution and higher frame rates for the acquisition of the PWV or higher spatial resolution and lower frame rates for the acquisition of the 3D WSS in a reasonable measurement time of only 35 minutes. This enabled the in vivo assessment of all relevant hemodynamic parameters related to atherosclerosis development and progression in one experimental session. This method was validated in healthy wild type and atherosclerotic Apoe-/- mice, indicating no differences in robustness between pathological and healthy mice. The heterogeneous distribution of plaque development and arterial stiffening in atherosclerosis [10, 12], however, points out the importance of local PWV measurements. Therefore, future studies should focus on the 3D acquisition of the local PWV in the murine aortic arch based on the presented method, in order to enable spatially resolved correlations of local arterial stiffness with other hemodynamic parameters and plaque composition. In Chapter 3, the previously established methods were used for the investigation of changing aortic hemodynamics during ageing and atherosclerosis in healthy wild type and atherosclerotic Apoe-/- mice using the previously established methods [4, 16] based on high-resolution 4D-flow MRI. In this work, serial measurements of healthy and atherosclerotic mice were conducted to track all changes in hemodynamics in the complete aortic arch over time. Moreover, spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated. This important feature allowed for the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and most importantly – at a glance. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe−/− mice, with decreasing longWSS and increasing OSI, while showing constant PWV in healthy mice and increasing longWSS and decreasing OSI, while showing increased PWV in diseased mice. Moreover, spatially resolved correlations between WSS, PWV, plaque and vessel wall characteristics were enabled, giving detailed insights into coherences between hemodynamics and plaque composition. Here, the circWSS was identified as a potential marker of plaque size and composition in advanced atherosclerosis. Moreover, correlations with PWV values identified the maximum radStrain could serve as a potential marker for vascular elasticity. This study demonstrated the feasibility and utility of high-resolution 4D flow MRI to spatially resolve, visualize and analyze statistical differences in all relevant hemodynamic parameters over time and between healthy and diseased mice, which could significantly improve our understanding of plaque progression towards vulnerability. In future studies the relation of vascular elasticity and radial strain should be further investigated and validated with local PWV measurements and CFD. Moreover, the 2D histological datasets were not reflecting the 3D properties and regional characteristics of the atherosclerotic plaques. Therefore, future studies will include 3D plaque volume and composition analysis like morphological measurements with MRI or light-sheet microscopy to further improve the analysis of the relationship between hemodynamics and atherosclerosis. Chapter 4 aimed at the description and investigation of hemodynamics in early stages of atherosclerosis. Moreover, this study included measurements of hemodynamics at baseline levels in healthy WT and atherosclerotic mouse models. Due to the lack of hemodynamic-related studies in Ldlr-/- mice, which are the most used mouse models in atherosclerosis research together with the Apoe-/- mouse model, this model was included in this study to describe changing hemodynamics in the aortic arch at baseline levels and during early atherosclerosis development and progression for the first time. In this study, distinct differences in aortic geometries of these mouse models at baseline levels were described for the first time, which result in significantly different flow- and WSS profiles in the Ldlr-/- mouse model. Further basal characterization of different parameters revealed only characteristic differences in lipid profiles, proving that the geometry is highly influencing the local WSS in these models. Most interestingly, calculation of the atherogenic index of plasma revealed a significantly higher risk in Ldlr-/- mice with ongoing atherosclerosis development, but significantly greater plaque areas in the aortic arch of Apoe-/- mice. Due to the given basal WSS and OSI profile in these two mouse models – two parameters highly influencing plaque development and progression – there is evidence that the regional plaque development differs between these mouse models during very early atherogenesis. Therefore, future studies should focus on the spatiotemporal evaluation of plaque development and composition in the three defined aortic regions using morphological measurements with MRI or 3D histological analyses like LSFM. Moreover, this study offers an excellent basis for future studies incorporating CFD simulations, analyzing the different measured parameter combinations (e.g., aortic geometry of the Ldlr-/- mouse with the lipid profile of the Apoe-/- mouse), simulating the resulting plaque development and composition. This could help to understand the complex interplay between altered hemodynamics, serum lipids and atherosclerosis and significantly improve our basic understanding of key factors initiating atherosclerosis development. Chapter 5 describes the establishment of a tissue-engineered artery model, which is based on native, decellularized porcine carotid artery scaffolds, cultured in a MRI-suitable bioreactor-system [23] for the investigation of hemodynamic-related atherosclerosis development in a controllable manner, using the previously established methods for WSS and PWV assessment [4, 16]. This in vitro artery model aimed for the reduction of animal experiments, while simultaneously offering a simplified, but completely controllable physical and biological environment. For this, a very fast and gentle decellularization protocol was established in a first step, which resulted in porcine carotid artery scaffolds showing complete acellularity while maintaining the extracellular matrix composition, overall ultrastructure and mechanical strength of native arteries. Moreover, a good cellular adhesion and proliferation was achieved, which was evaluated with isolated human blood outgrowth endothelial cells. Most importantly, an MRI-suitable artery chamber was designed for the simultaneous cultivation and assessment of high-resolution 4D hemodynamics in the described artery models. Using high-resolution 4D-flow MRI, the bioreactor system was proven to be suitable to quantify the volume flow, the two components of the WSS and the radStrain as well as the PWV in artery models, with obtained values being comparable to values found in literature for in vivo measurements. Moreover, the identification of first atherosclerotic processes like intimal thickening is achievable by three-dimensional assessment of the vessel wall morphology in the in vitro models. However, one limitation is the lack of a medial smooth muscle cell layer due to the dense ECM. Here, the utilization of the laser-cutting technology for the generation of holes and / or pits on a microscale, eventually enabling seeding of the media with SMCs showed promising results in a first try and should be further investigated in future studies. Therefore, the proposed artery model possesses all relevant components for the extension to an atherosclerosis model which may pave the way towards a significant improvement of our understanding of the key mechanisms in atherogenesis. Chapter 6 describes the development of an easy-to-prepare, low cost and fully customizable artery model based on biomaterials. Here, thermoresponsive sacrificial scaffolds, processed with the technique of MEW were used for the creation of variable, biomimetic shapes to mimic the geometric properties of the aortic arch, consisting of both, bifurcations and curvatures. After embedding the sacrificial scaffold into a gelatin-hydrogel containing SMCs, it was crosslinked with bacterial transglutaminase before dissolution and flushing of the sacrificial scaffold. The hereby generated channel was subsequently seeded with ECs, resulting in an easy-to-prepare, fast and low-cost artery model. In contrast to the native artery model, this model is therefore more variable in size and shape and offers the possibility to include smooth muscle cells from the beginning. Moreover, a custom-built and highly adaptable perfusion chamber was designed specifically for the scaffold structure, which enabled a one-step creation and simultaneously offering the possibility for dynamic cultivation of the artery models, making it an excellent basis for the development of in vitro disease test systems for e.g., flow-related atherosclerosis research. Due to time constraints, the extension to an atherosclerosis model could not be achieved within the scope of this thesis. Therefore, future studies will focus on the development and validation of an in vitro atherosclerosis model based on the proposed bi- and three-layered artery models. In conclusion, this thesis paved the way for a fast acquisition and detailed analyses of changing hemodynamics during atherosclerosis development and progression, including spatially resolved analyses of all relevant hemodynamic parameters over time and in between different groups. Moreover, to reduce animal experiments, while gaining control over various parameters influencing atherosclerosis development, promising artery models were established, which have the potential to serve as a new platform for basic atherosclerosis research. N2 - Im Rahmen dieser Arbeit wurden drei Hauptansätze zur Bewertung und Untersuchung der veränderten Hämodynamik wie Wandschubspannung, des oszillatorischen Scherindex und der arteriellen Pulswellengeschwindigkeit bei der Entwicklung und Progression der Atherosklerose durchgeführt: 1. Die Etablierung einer schnellen Methode zur gleichzeitigen Bestimmung der 3D-Wandschubspannung und der Pulswellengeschwindigkeit im gesamten Aortenbogen der Maus mittels hochauflösender 4D-Fluss-MRT 2. Die Verwendung von seriellen in vivo Messungen in atherosklerotischen Mausmodellen mittels hochauflösender 4D-Fluss-MRT, die in Studien zur Beschreibung der veränderten Hämodynamik bei später und früher Atherosklerose aufgeteilt wurden 3. Die Entwicklung von tissue-engineerten Arterienmodellen für die kontrollierte Anwendung und Variation von hämodynamischen und biologischen Parametern, unterteilt in native Arterienmodelle und biofabrizierte Arterienmodelle, mit dem Ziel, die Beziehung zwischen Atherogenese und veränderter Hämodynamik zu untersuchen Kapitel 2 beschreibt die Etablierung einer Methode zur gleichzeitigen Messung von 3D-Wandschubspannung und Pulswellengeschwindigkeit im Aortenbogen der Maus unter Verwendung der Ultrahochfeld-MRT bei 17,6T [16], die auf der zuvor veröffentlichten Methode zur schnellen, selbstnavigierten Messung der Wandschubspannung im Aortenbogen der Maus unter Verwendung der radialen 4D-Phasenkontrast-MRT bei 17,6T [4] basiert. Dieses Projekt basiert auf der gemeinsamen Arbeit von Dr. Patrick Winter, der diese Methode entwickelt hat, und der Autorin dieser Thesis, Kristina Andelovic, die die Experimente und statistischen Analysen durchgeführt hat. Da die in diesem Kapitel beschriebene Methode die Grundlage für die folgenden in vivo Studien darstellt und sich nicht in die einzelnen Beiträge der Autoren aufteilen lässt, ohne dass wichtige Informationen verloren gehen, wurde dieses Kapitel nicht in die einzelnen Teile aufgeteilt, um grundlegende Informationen über die Mess- und Analysemethoden zu liefern und somit eine bessere Verständlichkeit für die folgenden Studien zu gewährleisten. Die größte Herausforderung in diesem Kapitel bestand darin, die Anforderung an eine hohe räumliche Auflösung zur Bestimmung der Geschwindigkeitsgradienten an der Gefäßwand für die WSS-Quantifizierung und an eine hohe zeitliche Auflösung für die Bestimmung der Pulswellengeschwindigkeit zu erfüllen, ohne die Messzeit aufgrund der Notwendigkeit von zwei separaten Messungen zu verlängern. Darüber hinaus ist für eine vollständige Erfassung der Hämodynamik im murinen Aortenbogen eine vollständige 3D-Messung des Aortenbogens erforderlich, die durch die Nutzung der retrospektiven Navigation und radialen Trajektorien erreicht wurde. Dies wurde durch ein hoch flexibles Rekonstruktionssystem ermöglicht, das entweder Bilder mit geringerer räumlicher Auflösung und höheren Bildraten für die Erfassung der Pulswellengeschwindigkeit oder mit höherer räumlicher Auflösung und niedrigeren Bildraten für die Erfassung der 3D-WSS in einer angemessenen Messzeit von nur 35 Minuten rekonstruieren konnte. Die in vivo-Bestimmung aller relevanter hämodynamischen Parameter, die mit der Entwicklung und dem Fortschreiten der Atherosklerose zusammenhängen, wurde somit in einer einzigen experimentellen Sitzung ermöglicht. Die Methode wurde an gesunden Wildtyp- und atherosklerotischen Apoe-/- Mäusen validiert, wobei keine Unterschiede in der Robustheit der Messungen zwischen pathologischen und gesunden Mäusen festgestellt werden konnten. Die heterogene Verteilung der Plaqueentwicklung und Arterienversteifung in der Atherosklerose [10, 12] weist jedoch auf die Wichtigkeit lokaler PWV-Messungen hin. Zukünftige Studien sollten sich daher auf die 3D-Erfassung der lokalen PWV im murinen Aortenbogen auf Grundlage der vorgestellten Methode konzentrieren, um räumlich aufgelöste Korrelationen der lokalen arteriellen Steifigkeit mit anderen hämodynamischen Parametern und der Plaquezusammensetzung zu ermöglichen. In Kapitel 3 wurden die zuvor etablierten Methoden zur Untersuchung der sich verändernden Hämodynamik in der Aorta während des Alterns und der Atherosklerose bei gesunden Wildtyp- und atherosklerotischen Apoe-/- Mäusen verwendet [4, 16], die auf hochauflösender 4D-Fluss MRT basieren. In dieser Arbeit wurden serielle Messungen an gesunden und atherosklerotischen Mäusen durchgeführt, um alle Veränderungen der Hämodynamik im gesamten Aortenbogen über die Zeit zu verfolgen. Zudem wurden in dieser Arbeit räumlich aufgelöste 2D-Projektionskarten der WSS und des OSI des gesamten Aortenbogens generiert. Diese Methode ermöglichte die pixelweise statistische Analyse der Unterschiede und hämodynamischen Veränderungen zwischen und innerhalb von Gruppen im Zeitverlauf und die Visualisierung auf einen Blick. Die Studie ergab sich gegensätzlich entwickelnde lokale hämodynamische Profile bei gesunden WT- und atherosklerotischen Apoe-/- Mäusen, wobei die longWSS über die Zeit abnahm und der OSI zunahm, während die PWV bei gesunden Mäusen konstant blieb. Im Gegensatz nahm die longWSS zu und der OSI bei kranken Mäusen ab, während die PWV über die Zeit zunahm. Darüber hinaus wurden räumlich aufgelöste Korrelationen zwischen WSS, PWV, Plaque und Gefäßwandeigenschaften ermöglicht, die detaillierte Einblicke in die Zusammenhänge zwischen Hämodynamik und Plaquezusammensetzung in der Atherosklerose bieten. Dabei wurde die zirkumferentielle WSS als potenzieller Marker für die Plaquegröße und -zusammensetzung bei fortgeschrittener Atherosklerose identifiziert. Darüber hinaus ergaben Korrelationen mit der PWV, dass der maximale radiale Druck als potenzieller Marker für die vaskuläre Elastizität dienen könnte. Zusammengefasst demonstriert diese Studie die Nützlichkeit der hochauflösenden 4D-Fluss MRT zur räumlichen Auflösung, Visualisierung und Analyse statistischer Unterschiede in allen relevanten hämodynamischen Parametern im Zeitverlauf und zwischen gesunden und erkrankten Mäusen, was unser Verständnis der Plaqueprogression in Richtung Vulnerabilität erheblich verbessern könnte. In zukünftigen Studien sollte jedoch der Zusammenhang zwischen Gefäßelastizität und radialem Druck weiter untersucht und mit lokalen PWV-Messungen und CFD validiert werden. Darüber hinaus spiegelten die histologischen 2D-Datensätze nicht die 3D-Eigenschaften und regionalen Charakteristika der atherosklerotischen Plaques wider. Daher sollten künftige Studien eine Analyse des 3D-Plaquevolumens und der 3D-Plaquenzusammensetzung sowie morphologische Messungen mittels MRT oder der Lichtblattmikroskopie mit einbeziehen, um das fundamentale Verständnis der Beziehung zwischen veränderter Hämodynamik und der Atherosklerose weiter zu verbessern. In Kapitel 4 ging es um die Beschreibung und Untersuchung der Hämodynamik in frühen Stadien der Atherosklerose. Darüber hinaus umfasste diese Studie zum ersten Mal Messungen der basalen Hämodynamik in gesunden WT- und atherosklerotischen Mausmodellen. Aufgrund des Mangels an Studien, die die Hämodynamik in Ldlr-/- Mäusen beschreiben, die zusammen mit dem Apoe-/- Mausmodell die am häufigsten verwendeten Mausmodelle in der Atheroskleroseforschung sind, wurde dieses Modell in diese Studie integriert, um erstmals die sich verändernde Hämodynamik im Aortenbogen zu Beginn und während der Entwicklung und Progression der frühen Atherosklerose zu beschreiben. In dieser Studie wurden erstmals deutliche Unterschiede in den basalen Aortengeometrien dieser Mausmodelle identifiziert, die zu signifikant unterschiedlichen Fluss- und WSS-Profilen im Ldlr-/- Mausmodell führen. Eine weitere basale Charakterisierung verschiedener Parameter ergab nur modell-charakteristische Unterschiede in den Lipidprofilen, was beweist, dass die Geometrie die lokale WSS in diesen Modellen stark beeinflusst. Interessanterweise ergab die Berechnung des atherogenen Plasma-Indexes ein signifikant höheres Risiko bei Ldlr-/- Mäusen mit fortschreitender Atheroskleroseentwicklung, aber signifikant größere Plaqueflächen im Aortenbogen der Apoe-/- Mäuse. Aufgrund des gegebenen basalen WSS- und OSI-Profils in diesen beiden Mausmodellen - zwei Parameter, die die Plaque-Entwicklung und -Progression stark beeinflussen - gibt es Hinweise darauf, dass sich die regionale Plaque-Entwicklung zwischen diesen Mausmodellen während der Atherogenese stark unterscheidet. Daher sollten sich künftige Studien auf die räumlich-zeitliche Bewertung der Plaqueentwicklung und -Zusammensetzung in den drei definierten Aortenregionen konzentrieren, wobei morphologische Messungen mittels MRT oder histologische 3D-Analysen wie LSFM zum Einsatz kommen. Darüber hinaus bietet diese Studie eine hervorragende Grundlage für künftige Studien mit CFD-Simulationen, in denen die verschiedenen gemessenen Parameterkombinationen (z. B. die Aortengeometrie der Ldlr-/-Maus mit dem Lipidprofil der Apoe-/- Maus) analysiert und die daraus resultierende Plaqueentwicklung und -Zusammensetzung simuliert werden. Dies könnte zum Verständnis des komplexen Zusammenspiels zwischen veränderter Hämodynamik, Serumlipiden und Atherosklerose beitragen und unser grundlegendes Verständnis der Schlüsselfaktoren für die Entstehung von Atherosklerose deutlich verbessern. In Kapitel 5 wird die Etablierung eines tissue-engineerten Arterienmodells beschrieben, das auf nativen, von Schweinehalsschlagadern hergestellten, dezellularisierten Gerüststrukturen basiert. Diese wurden zudem in einem MRT-geeigneten Bioreaktorsystem [23] kultiviert, um die hämodynamisch bedingte Atheroskleroseentwicklung auf kontrollierbare Weise zu untersuchen, wobei hierfür die zuvor etablierten Methoden zur WSS- und PWV-Bewertung [4, 16] verwendet wurden. Dieses in vitro Arterienmodell zielte auf die Reduzierung von Tierversuchen ab und bot gleichzeitig eine vereinfachte, aber vollständig kontrollierbare physikalische und biologische Umgebung. Zu diesem Zweck wurde in einem ersten Schritt ein sehr schnelles und schonendes Dezellularisierungsverfahren etabliert, das zu Gerüststrukturen basierend auf Schweinehalsschlagadern führte, die eine vollständige Azellularität aufwiesen, wobei gleichzeitig die Zusammensetzung der extrazellulären Matrix, die allgemeine Ultrastruktur und die mechanischen Eigenschaften der nativen Arterien erhalten blieben. Darüber hinaus wurde eine gute Zelladhäsion und -proliferation erreicht, die mit isolierten menschlichen Endothelzellen aus humanem Vollblut untersucht wurde. Darüber hinaus wurde zum ersten Mal eine MRT-geeignete Arterienkammer für die gleichzeitige Kultivierung der generierten Modelle und der Untersuchung der hochauflösenden 4D-Hämodynamik in diesen Arterienmodellen entwickelt. Unter Verwendung der hochauflösenden 4D-Fluss-MRT erwies sich das Bioreaktorsystem als sehr geeignet, den Volumenstrom, die beiden Komponenten der WSS inklusive dem radialen Druck und die PWV in den Arterienmodellen zu quantifizieren, wobei die erhaltenen Werte sehr gut mit den in der Literatur gefundenen Werten für in vivo-Messungen vergleichbar sind. Darüber hinaus lassen sich durch die dreidimensionale Untersuchung der Gefäßwandmorphologie in den in vitro-Modellen erste atherosklerotische Prozesse wie die Verdickung der Intima erkennen. Eine Einschränkung ist jedoch das Fehlen einer medialen glatten Muskelzellschicht aufgrund der dichten ECM des Gewebegerüsts. Die Verwendung der Laserschneidetechnik zur Erzeugung von Löchern und / oder Gruben im Mikrometerbereich, die eine Besiedlung des Mediums mit SMCs ermöglichen, zeigte in einem ersten Versuch vielversprechende Ergebnisse und sollte in zukünftigen Studien daher dringend weiter untersucht werden. Das präsentierte Arterienmodell verfügt somit über alle relevanten Komponenten für die Erweiterung zu einem Atherosklerosemodell und ebnet den Weg für ein deutlich besseres Verständnis der Schlüsselmechanismen in der Atherogenese. Kapitel 6 beschreibt die Entwicklung eines einfach herzustellenden, kostengünstigen und vollständig an gegebene Bedürfnisse anpassbaren Arterienmodells auf Grundlage von Biomaterialien. Hier wurden thermoresponsive Opfergerüststrukturen, die mit der MEW-Technik hergestellt wurden, zur Herstellung variabler, biomimetischer Formen verwendet, um die geometrischen Eigenschaften des Aortenbogens, bestehend aus Verzweigungen und Krümmungen, zu imitieren. Nach der Einbettung der Opfergerüststruktur in ein Gelatin-Hydrogel, das zudem SMCs enthält, wurde es mit bakterieller Transglutaminase vernetzt, bevor es aufgelöst und gespült wurde. Der so entstandene Hydrogelkanal wurde anschließend mit Endothelzellen besiedelt, wodurch ein einfach zu erstellendes, schnelles und kostengünstiges Arterienmodell entstand. Im Gegensatz zum nativen Arterienmodell ist dieses Modell daher deutlich variabler in Größe und Form und bietet die wichtige Möglichkeit, von Anfang an glatte Muskelzellen mit einzubringen. Darüber hinaus wurde speziell für die gegebene Gerüststruktur eine maßgeschneiderte und hochgradig anpassungsfähige Perfusionskammer entwickelt, die eine sehr schnelle und einstufige Herstellung des Arterienmodells ermöglicht und gleichzeitig die Möglichkeit zur dynamischen Kultivierung der Modelle bietet, was eine hervorragende Grundlage für die Entwicklung von in vitro Krankheits-Testsystemen für z.B. die Atheroskleroseforschung im Zusammenhang mit der Hämodynamik darstellt. Aus Zeitgründen konnte die Ausweitung auf ein Atherosklerosemodell jedoch im Rahmen dieser Arbeit nicht realisiert werden. Daher werden sich zukünftige Studien auf die Entwicklung und Validierung eines in vitro-Atherosklerosemodells konzentrieren, das auf den hier entwickelten zwei- und dreischichtigen Arterienmodellen basiert. Zusammenfassend lässt sich sagen, dass diese Arbeit den Weg für eine schnelle Erfassung und detaillierte Analyse der sich verändernden Hämodynamik während der Entwicklung und der Progression der Atherosklerose geebnet hat, einschließlich räumlich aufgelöster Analysen aller relevanten hämodynamischen Parameter im Zeitverlauf innerhalb einer Gruppe und zwischen verschiedenen Gruppen. Darüber hinaus wurden vielversprechende Arterienmodelle etabliert, die das Potenzial haben, als neue Plattform für die Atherosklerose-Grundlagenforschung zu dienen, um Tierversuche zu minimieren und gleichzeitig die Kontrolle über verschiedene Parameter zu erlangen, die die Atheroskleroseentwicklung beeinflussen. KW - Hämodynamik KW - Arteriosklerose KW - Tissue Engineering KW - Atherosclerosis KW - MRI KW - Hemodynamics KW - Tissue Engineering KW - Biofabrication KW - Artery Models Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-303601 ER - TY - THES A1 - Berberich, Oliver T1 - Lateral Cartilage Tissue Integration - Evaluation of Bonding Strength and Tissue Integration \(in\) \(vitro\) Utilizing Biomaterials and Adhesives T1 - Laterale Knorpelintegration - Beurteilung der Adhäsionskraft und der Gewebeintegration \(in\) \(vitro\) unter Verwendung verschiedener Biomaterialien und Gewebekleber N2 - Articular cartilage defects represent one of the most challenging clinical problem for orthopedic surgeons and cartilage damage after trauma can result in debilitating joint pain, functional impairment and in the long-term development of osteoarthritis. The lateral cartilage-cartilage integration is crucial for the long-term success and to prevent further tissue degeneration. Tissue adhesives and sealants are becoming increasingly more popular and can be a beneficial approach in fostering tissue integration, particularly in tissues like cartilage where alternative techniques, such as suturing, would instead introduce further damage. However, adhesive materials still require optimization regarding the maximization of adhesion strength on the one hand and long-term tissue integration on the other hand. In vitro models can be a valuable support in the investigation of potential candidates and their functional mechanisms. For the conducted experiments within this work, an in vitro disc/ring model obtained from porcine articular cartilage tissue was established. In addition to qualitative evaluation of regeneration, this model facilitates the implementation of biomechanical tests to quantify cartilage integration strength. Construct harvesting for histology and other evaluation methods could be standardized and is ethically less questionable compared to in vivo testing. The opportunity of cell culture technique application for the in vitro model allowed a better understanding of cartilage integration processes. Tissue bonding requires chemical or physical interaction of the adhesive material and the substrate. Adhesive hydrogels can bind to the defect interface and simultaneously fill the gap of irregularly shaped defect voids. Fibrin gels are derived from the physiological blood-clot formation and are clinically applied for wound closure. Within this work, comparisons of different fibrin glue formulations with the commercial BioGlue® were assessed, which highlighted the need for good biocompatibility when applied on cartilage tissue in order to achieve satisfying long-term integration. Fibrin gel formulations can be adapted with regard to their long-term stability and when applied on cartilage disc/ring constructs improved integrative repair is observable. The kinetic of repairing processes was investigated in fibrin-treated cartilage composites as part of this work. After three days in vitro cultivation, deposited extracellular matrix (ECM) was obvious at the glued interface that increased further over time. Interfacial cell invasion from the surrounding native cartilage was detected from day ten of tissue culture. The ECM formation relies on molecular factors, e.g., as was shown representatively for ascorbic acid, and contributes to increasing integration strengths over time. The experiments performed with fibrin revealed that the treatment with a biocompatible adhesive that allows cartilage neosynthesis favors lateral cartilage integration in the long term. However, fibrin has limited immediate bonding strength, which is disadvantageous for use on articular cartilage that is subject to high mechanical stress. The continuing aim of this thesis was to further develop adhesive mechanisms and new adhesive hydrogels that retain the positive properties of fibrin but have an increased immediate bonding strength. Two different photochemical approaches with the advantage of on-demand bonding were tested. Such treatment potentially eases the application for the professional user. First, an UV light induced crosslinking mechanism was transferred to fibrin glue to provide additional bonding strength. For this, the cartilage surface was functionalized with highly reactive light-sensitive diazirine groups, which allowed additional covalent bonds to the fibrin matrix and thus increased the adhesive strength. However, the disadvantages of this approach were the multi-step bonding reactions, the need for enzymatic pretreatment of the cartilage, expensive reagents, potential UV-light damage, and potential toxicity hazards. Due to the mentioned disadvantages, no further experiments, including long-term culture, were carried out. A second photosensitive approach focused on blue light induced crosslinking of fibrinogen (RuFib) via a photoinitiator molecule instead of using thrombin as a crosslinking mediator like in normal fibrin glue. The used ruthenium complex allowed inter- and intramolecular dityrosine binding of fibrinogen molecules. The advantage of this method is a one-step curing of fibrinogen via visible light that further achieved higher adhesive strengths than fibrin. In contrast to diazirine functionalization of cartilage, the ruthenium complex is of less toxicological concern. However, after in vitro cultivation of the disc/ring constructs, there was a decrease in integration strength. Compared to fibrin, a reduced cartilage synthesis was observed at the defect. It is also disadvantageous that a direct adjustment of the adhesive can only be made via protein concentration, since fibrinogen is a natural protein that has a fixed number of tyrosine binding sites without chemical modification. An additional cartilage adhesive was developed that is based on a mussel-inspired adhesive mechanism in which reactivity to a variety of substrates is enabled via free DOPA amino acids. DOPA-based adhesion is known to function in moist environments, a major advantage for application on water-rich cartilage tissue surrounded by synovial liquid. Reactive DOPA groups were synthetically attached to a polymer, here POx, to allow easy chemical modifiability, e.g. insertion of hydrolyzable ester motifs for tunable degradation. The possibility of preparing an adhesive hybrid hydrogel of POx in combination with fibrinogen led to good cell compatibility as was similarly observed with fibrin, but with increased immediate adhesive strength. Degradation could be adjusted by the amount of ester linkages on the POx and a direct influence of degradation rates on the development of integration in the in vitro model could be shown. Hydrogels are well suited to fill defect gaps and immediate integration can be achieved via adhesive properties. The results obtained show that for the success of long-term integration, a good ability of the adhesive to take up synthesized ECM components and cells to enable regeneration is required. The degradation kinetics of the adhesive must match the remodeling process to avoid intermediate loss of integration power and to allow long-term firm adhesion to the native tissue. Hydrogels are not only important as adhesives for smaller lesions, but also for filling large defect volumes and populating them with cells to produce tissue engineered cartilage. Many different hydrogel types suitable for cartilage synthesis are reported in the literature. A long-term stable fibrin formulation was tested in this work not only as an adhesive but also as a bulk hydrogel construct. Agarose is also a material widely used in cartilage tissue engineering that has shown good cartilage neosynthesis and was included in integration assessment. In addition, a synthetic hyaluronic acid-based hydrogel (HA SH/P(AGE/G)) was used. The disc/ring construct was adapted for such experiments and the inner lumen of the cartilage ring was filled with the respective hydrogel. In contrast to agarose, fibrin and HA-SH/P(AGE/G) gels have a crosslink mechanism that led to immediate bonding upon contact with cartilage during curing. The enhanced cartilage neosynthesis in agarose compared to the other hydrogel types resulted in improved integration during in vitro culture. This shows that for the long-term success of a treatment, remodeling of the hydrogel into functional cartilage tissue is a very high priority. In order to successfully treat larger cartilage defects with hydrogels, new materials with these properties in combination with chemical modifiability and a direct adhesion mechanism are one of the most promising approaches. N2 - Gelenkknorpeldefekte stellen eines der größten klinischen Probleme für orthopädische Chirurgen dar, und Knorpelschäden nach einem Trauma können zu starken Gelenkschmerzen, Funktionseinschränkungen und langfristig zur Entwicklung von Arthrose führen. Die laterale Knorpel-Knorpel-Integration ist entscheidend für den langfristigen Behandlungserfolg, um eine weitere Degeneration des Gewebes zu verhindern. Gewebekleber und -versiegelungen erfreuen sich zunehmender Beliebtheit und können einen vorteilhaften Ansatz zur Förderung der Gewebeintegration darstellen. Insbesondere bei einem avaskulären Gewebe wie Knorpel können alternative Fixierungstechniken wie Nähte eher zu weiteren Schäden führen. Aktuelle Klebstoffe bedürfen jedoch noch der Optimierung im Hinblick auf die Maximierung der Klebekraft einerseits und der langfristigen Gewebsintegration andererseits. In vitro Modelle können eine wertvolle Unterstützung bei der Untersuchung potenzieller Kleber-Kandidaten und derer Funktionsmechanismen sein. Für die im Rahmen dieser Arbeit durchgeführten Experimente wurde ein in vitro Disc/Ring-Modell aus porcinem Gelenkknorpel hergestellt. Neben der qualitativen Bewertung der Regeneration erleichtert dieses Modell die Durchführung biomechanischer Tests zur Quantifizierung der Knorpelintegrationskraft. Die Herstellung von Konstrukten für die Histologie und anderer analytischer Verfahren ist standardisierbar und ist im Vergleich zu in vivo Versuchen ethisch weniger bedenklich. Die Möglichkeit der Anwendung von Zellkulturtechniken mit dem in vitro Modell ermöglicht eine bessere Untersuchung von Knorpelintegrationsprozessen. Das Verkleben von Gewebe erfordert eine chemische oder physikalische Wechselwirkung zwischen dem Klebstoff und dem Substrat. Adhäsive Hydrogele können sich an die Defektoberfläche binden und gleichzeitig die Lücke unregelmäßig geformter Defekthohlräume füllen. Fibrin-Gele sind von der physiologischen Blutgerinnung abgeleitet und werden seit langem klinisch zum Wundverschluss eingesetzt. Innerhalb dieser Arbeit wurden Vergleiche verschiedener Fibrinkleberformulierungen mit dem kommerziellen BioGlue® durchgeführt, welche gezeigt haben, dass bei der Anwendung auf Knorpelgewebe eine gute Biokompatibilität erforderlich ist, um eine zufriedenstellende Langzeitintegration zu erreichen. Fibrinformulierungen können im Hinblick auf ihre Langzeitstabilität angepasst werden, und bei der Anwendung auf Knorpel Disc/Ring-Konstrukten ist eine verbesserte integrative Reparatur zu beobachten. Im Rahmen dieser Arbeit wurde die Kinetik der Reparaturprozesse in fibrinbehandelten Knorpelkompositen untersucht. Nach dreitägiger in vitro-Kultivierung war eine Ablagerung von extrazellulärer Matrix (ECM) an der verklebten Grenzfläche zu erkennen, welche mit der Zeit weiter zunahm. Ab dem zehnten Tag der Gewebekultur wurde das Einwandern von Zellen aus dem umgebenden nativen Knorpel an der Grenzfläche festgestellt. Die ECM-Bildung hängt von Stoffwechselfaktoren ab, wie es beispielhaft für Ascorbinsäure gezeigt wurde. Dabei trug neue ECM zu einer mit der Zeit zunehmenden Integrationsstärke bei. Die mit Fibrin durchgeführten Experimente haben gezeigt, dass der Ansatz mit einem biokompatiblen Klebstoff und dem Potenzial zur Knorpelneosynthese die laterale Knorpelintegration langfristig begünstigt. Allerdings hatte Fibrin nur eine begrenzte anfängliche Klebekraft, was für den Einsatz auf mechanisch stark belastetem Gelenkknorpel nachteilig ist. Das weiterführende Ziel dieser Arbeit war es unter anderem Haftmechanismen und neue adhäsive Hydrogele zu entwickeln, welche die positiven Eigenschaften von Fibrin beibehalten, aber eine höhere Klebekraft aufweisen. Es wurden zwei verschiedene photochemische Ansätze getestet, die den Vorteil einer zeitlich festlegbaren Verklebung haben und somit dem Anwender eine einfache Applizierung ermöglichen. Zunächst wurde ein UV-Licht-induzierter Vernetzungsmechanismus zur Bereitstellung zusätzlicher Klebestellen zum Fibrinkleber entwickelt. Die Knorpeloberfläche wurde dabei mit hochreaktiven, lichtempfindlichen Diazirin-Molekülen funktionalisiert, die zusätzliche kovalente Bindungen an die Fibrinmatrix ermöglichten und damit die direkte Adhäsionskraft erhöhten. Die Nachteile dieses Ansatzes waren jedoch die mehrstufigen Vernetzungsreaktionen, die Notwendigkeit einer enzymatischen Vorbehandlung des Knorpels, teure Reagenzien, eine mögliche Schädigung durch UV-Licht und potentielle toxikologische Risiken. Wegen den erwähnten Nachteilen wurde auf zusätzliche Untersuchungen verzichtet und der Fokus auf die Alternativenfindung gelegt. Ein weiterer Ansatz konzentrierte sich auf die Vernetzung von Fibrinogen durch blaues Licht (RuFib) mittels eines Photoinitiaor-Moleküls statt über Thrombinzugabe wie bei gewöhnlichen Fibrinklebern. Der verwendete Rutheniumkomplex ermöglichte die inter- und intramolekulare Dityrosinbindung von Fibrinogenmolekülen. Der Vorteil war dabei die einstufige lichtinduzierte Vernetzung von Fibrinogen mit höheren Haftkräften als bei Fibrin. Im Gegensatz zur Diazirin-Funktionalisierung von Knorpel ist der Rutheniumkomplex auch toxikologisch weniger bedenklich. Nach in vitro Kultivierung der RuFib geklebten Disc/Ring-Konstruktes kam es jedoch zu einer Abnahme der Integrationskraft. Im Vergleich zu Fibrin wurde eine verminderte Knorpelsynthese am Defekt beobachtet. Nachteilig ist auch, dass eine Modifizierung des Klebers einzig über die Proteinkonzentration erfolgen kann, da Fibrinogen als natürliches Protein eine feste Anzahl von Tyrosin-Bindungsstellen hat und alternativ chemisch verändert werden müsste. Ein zusätzlich entwickelter Klebstoff basiert auf einem von Muscheln inspirierten Haftmechanismus, bei dem die Reaktivität zu einer Vielzahl von Substraten über freie DOPA-Aminosäuren ermöglicht wird. Es ist bekannt, dass die DOPA-basierte Adhäsion in einer feuchten Umgebung funktioniert, ein großer Vorteil für die Anwendung auf stark wasserhaltigem Knorpelgewebe und im feuchten Synovium. Reaktive DOPA-Gruppen wurden synthetisch an ein Polymer, in diesem Fall POx, gebunden, um eine einfache chemische Modifizierbarkeit zu ermöglichen. Mögliche Anpassungen sind z.B. das Einfügen von hydrolysierbaren Esterbindungen um veränderte Degradationsraten zu erreichen. Die Möglichkeit der Herstellung eines adhäsiven Hybridhydrogels aus POx in Kombination mit Fibrinogen führte zu einer erhöhten Zellkompatibilität, wie sie bereits bei Fibrin beobachtet wurde, jedoch mit erhöhter direkter Klebekraft. Die angepasste Degradationskinetik über die Menge an Esterbindungen am POx hatte einen direkten Einfluss auf die Entwicklung der Integration im in vitro Modell gezeigt. Hydrogele sind gut geeignet, um Defektlücken zu füllen. Bei intrinsischen Adhäsionseigenschaften kann eine gewisse sofortige Integration erreicht werden. Die erzielten Ergebnisse zeigen, dass für den Erfolg einer langfristigen Integration eine gute Fähigkeit des Klebstoffs zur Aufnahme von synthetisierten ECM-Komponenten und Zellen erforderlich ist. Die Abbaukinetik des Klebstoffs muss dabei mit dem Umbauprozess im Gleichgewicht sein, um einen zwischenzeitlichen Verlust der Integrationskraft zu vermeiden und eine langfristige feste Adhäsion an das native Gewebe zu ermöglichen. Hydrogele sind nicht nur als Klebstoffe für kleinere Defekte wichtig, sondern auch als Tissue-Engineering Material um große Defektvolumina aufzufüllen und mit Zellen zu besiedeln. In der Literatur werden verschiedene Hydrogelarten für die Knorpelsynthese berichtet. Eine langzeitstabile Fibrinformulierung wurde in dieser Arbeit nicht nur als Klebstoff, sondern auch als größeres Hydrogelkonstrukt getestet. Agarose ist ebenfalls ein im Knorpel-Tissue-Engineering häufig verwendetes Material, das bereits eine gute Knorpelneosynthese gezeigt hat. Darüber hinaus wurde ein synthetisches Hyaluronsäure-basiertes Hydrogel (HA-SH/P(AGE/G)) untersucht. In durchgeführten Experimenten wurde das Disc/Ring Modell adaptiert und das innere Lumen des Knorpelrings mit dem jeweiligen Hydrogel gefüllt. Im Gegensatz zu Agarose verfügen Fibrin und das HA-SH/P(AGE/G)-Gel über einen Vernetzungsmechanismus, der beim Kontakt mit dem Knorpel während der Aushärtung zu einer sofortigen Bindung führte. Die verstärkte Knorpelneosynthese in Agarose im Vergleich zu den anderen Hydrogeltypen führte zu einer erhöhten Integration während der in vitro Kultur. Dies zeigt, dass für den langfristigen Erfolg eines Therapieansatzes der Umbau des Hydrogels in funktionelles Knorpelgewebe eine sehr hohe Priorität hat. Um größere Knorpeldefekte erfolgreich mit Hydrogelen behandeln zu können, sind neue Materialien mit diesen Eigenschaften in Kombination mit chemischer Modifizierbarkeit und einem direkten Adhäsionsmechanismus einer der vielversprechendsten Ansätze. KW - Knorpel KW - Hyaliner Knorpel KW - Gelenkknorpel KW - Arthrose KW - Kniegelenkarthrose KW - Cartiage Integration KW - Adhesive Hydrogels KW - in vitro Testmodell KW - Cartilage defect KW - Biomechanics KW - Tissue Engineering Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-346028 ER - TY - THES A1 - Böck, Thomas T1 - Multifunctional Hyaluronic Acid / Poly(glycidol) Hydrogels for Cartilage Regeneration Using Mesenchymal Stromal Cells T1 - Multifunktionale Hyaluronsäure / Poly(glycidol) Hydrogele für die Knorpelregeneration mit Mesenchymalen Stromazellen N2 - Improved treatment options for the degenerative joint disease osteoarthritis (OA) are of major interest, since OA is one of the main sources of disability, pain, and socioeconomic burden worldwide [202]. According to epidemiological data, already 27 million people suffer from OA in the US [23]. Moreover, the WHO expects OA to be the fourth most common cause of disability in 2020 [203], illustrating the need for effective and long-lasting therapy options of severe cartilage defects. Despite numerous clinically available products for the treatment of cartilage defects [62], the development of more cartilage-specific materials is still at the beginning. Hyaluronic acid (HA) is a major component of the cartilaginous extracellular matrix (ECM) and inherently creates a cell-friendly niche by providing cell attachment and migration sites. Furthermore, it is known that the functional groups of HA are well suited for chemical modification. These characteristics render HA an attractive material for hydrogel-based tissue engineering approaches. Poly(glycidol) (PG) as chemical crosslinker basically features similar chemical characteristics as the widely used poly(ethylene glycol) (PEG), but provides additional side groups at each repeating unit that can be further chemically functionalized. With the introduction of PG as multifunctional crosslinker for HA gels, a higher cross-linking density and, accordingly, a greater potential for biomimetic functionalization may be achieved. However, despite the mentioned potential benefits, PG has not been used for cartilage regeneration approaches so far. The initial aim of the study was to set up and optimize a HA-based hydrogel for the chondrogenic differentiation of mesenchymal stromal cells (MSCs), using different amounts and variations of cross-linkers. Therefore, the hydrogel composition was optimized by the utilization of different PEG diacrylate (PEGDA) concentrations to cross-link thiol-modified HA (Glycosil, HA-SH) via Michael addition. We aimed to generate volumestable scaffolds that simultaneously enable a maximum of ECM deposition. Histological and biochemical analysis showed 0.4% PEGDA as the most suitable concentration for these requirements (Section 5.1.2). In order to evaluate the impact of a differently designed cross-linker on MSC chondrogenesis, HA-SH was cross-linked with PEGTA (0.6%) and compared to PEGDA (0.4%) in a next step. Following this, acrylated PG (PG-Acr) as multifunctional cross-linker alternative to acrylated PEG was evaluated. It provides around five times more functional groups when utilized in PG-Acr (0.6%) HA-SH hydrogels compared to PEGTA (0.6%) HA-SH hydrogels, thus enabling higher degrees of biomimetic functionalization. Determination of cartilage-specific ECM components showed no substantial differences between both cross-linkers while the deposition of cartilaginous matrix appeared more homogeneous in HA-SH PG-Acr gels. Taken together, we were able to successfully increase the possibilities for biomimetic functionalization in the developed HA-SH hydrogel system by the introduction of PG-Acr as cross-linker without negatively affecting MSC chondrogenesis (Section 5.1.3). The next part of this thesis focused extensively on the biomimetic functionalization of PG-Acr (0.6%) cross-linked HA-SH hydrogels. Here, either biomimetic peptides or a chondrogenic growth factor were covalently bound into the hydrogels. Interestingly, the incorporation of a N-cadherin mimetic (HAV), a collagen type II binding (KLER), or a cell adhesion-mediating peptide (RGD) yielded no improvement of MSC chondrogenesis. For instance, the covalent binding of 2.5mM HAV changed morphology of cell nuclei and reduced GAG production while the incorporation of 1.0mM RGD impaired collagen production. These findings may be attributed to the already supportive conditions of the employed HA-based hydrogels for chondrogenic differentiation. Most of the previous studies reporting positive peptide effects on chondrogenesis have been carried out in less supportive PEG hydrogels or in significantly stiffer MeHA-based hydrogels [99, 101, 160]. Thus, the incorporation of peptides may be more important under unfavorable conditions while inert gel systems may be useful for studying single peptide effects (Section 5.2.1). The chondrogenic factor transforming growth factor beta 1 (TGF-b1) served as an example for growth factor binding to PG-Acr. The utilization of covalently bound TGF-b1 may thereby help overcome the need for repeated administration of TGF-b1 in in vivo applications, which may be an advantage for potential clinical application. Thus, the effect of covalently incorporated TGF-b1 was compared to the effect of the same amount of TGF-b1 without covalent binding (100nM TGF-b1) on MSC chondrogenesis. It was successfully demonstrated that covalent incorporation of TGF-b1 had a significant positive effect in a dose-dependent manner. Chondrogenesis of MSCs in hydrogels with covalently bound TGF-b1 showed enhanced levels of chondrogenesis compared to hydrogels into which TGF-b1 was merely mixed, as shown by stronger staining for GAGs, total collagen, aggrecan and collagen type II. Biochemical evaluation of GAG and collagen amounts, as well as Western blot analysis confirmed the histological results. Furthermore, the positive effect of covalently bound TGF-b1 was shown by increased expression of chondrogenic marker genes COL2A1, ACAN and SOX9. In summary, covalent growth factor incorporation utilizing PG-Acr as cross-linker demonstrated significant positive effects on chondrogenic differentiation of MSCs (Section 5.2.2). In general, PG-Acr cross-linked HA hydrogels generated by Michael addition represent a versatile hydrogel platform due to their high degree of acrylate functionality. These hydrogels may further offer the opportunity to combine several biological modifications, such as the incorporation of biomimetic peptides together with growth factors, within one cell carrier. A proof-of-principle experiment demonstrated the suitability of pure PG gels for studying single peptide effects. Here, the hydrogels were generated by the utilization of thiol-ene-click reaction. In this setting, without the supportive background of hyaluronic acid, MSCs showed enhanced chondrogenic differentiation in response to the incorporation of 1.0mM HAV. This was demonstrated by staining for GAGs, the cartilage-specific ECM molecules aggrecan and type II collagen, and by increased GAG and total collagen amounts shown by biochemical analysis. Thus, pure PG gels exhibit the potential to study the effects and interplay of peptides and growth factors in a highly modifiable, bioinert hydrogel environment. The last section of the thesis was carried out as part of the EU project HydroZONES that aims to develop and generate zonal constructs. The importance of zonal organization has attracted increased attention in the last years [127, 128], however, it is still underrepresented in tissue engineering approaches so far. Thus, the feasibility of zonal distribution of cells in a scaffold combining two differently composed hydrogels was investigated. A HA-SH(FMZ) containing bottom layer was generated and a pure PG top layer was subsequently cast on top of it, utilizing both times thiol-ene-click reaction. Indeed, stable, hierarchical constructs were generated that allowed encapsulated MSCs to differentiate chondrogenically in both zones as shown by staining for GAGs and collagen type II, and by quantification of GAG amount. Thus, the feasibility of differently composed zonal hydrogels utilizing PG as a main component was successfully demonstrated (Section 5.4). With the first-time utilization and evaluation of PG-Acr as versatile multifunctional cross-linker for the preparation of Michael addition-generated HA-SH hydrogels in the context of cartilage tissue engineering, a highly modifiable HA-based hydrogel system was introduced. It may be used in future studies as an easily applicable and versatile toolbox for the generation of biomimetically functionalized hydrogels for cell-based cartilage regeneration. The introduction of reinforcement structures to enhance mechanical resistance may thereby further increase the potential of this system for clinical applications. Additionally, it was also demonstrated that thiol-ene clickable hydrogels can be used for the generation of cell-laden, pure PG gels or for the generation of more complex, coherent zonal constructs. Furthermore, thiol-ene clickable PG hydrogels have already been further modified and successfully been used in 3D bioprinting experiments [204]. 3D bioprinting, as part of the evolving biofabrication field [205], offers the possibilities to generate complex and hierarchical structures, and to exactly position defined layers, yet at the same time alters the requirements for the utilized hydrogels [159, 206–209]. Since a robust chondrogenesis of MSCs was demonstrated in the thiol-ene clickable hydrogel systems, they may serve as a basis for the development of hydrogels as so called bioinks which may be utilized in more sophisticated biofabrication processes. N2 - Es ist von großem Interesse die Therapieoptionen für die degenerative Gelenkerkrankung Osteoarthrose (OA) zu verbessern, da OA als eine der weltweit häufigsten Ursachen von Bewegungseinschränkungen und Schmerzen gilt und somit eine sozioökonomische Belastung darstellt [202]. Laut epidemiologischen Studien leiden bereits 27 Millionen Menschen in den USA an OA [23]. Darüber hinaus geht die WHO davon aus, dass OA bereits im Jahr 2020 die vierthäufigste Ursache von körperlichen Behinderungen sein wird [203], was die Notwendigkeit für effektive und langanhaltende Therapien von schweren Knorpeldefekten zeigt. Obwohl sich bereits eine Vielzahl von Therapien in klinischer Anwendung für die Behandlung von Knorpeldefekten befindet [62], ist die Entwicklung von knorpelspezifischen Produkten noch nicht weit fortgeschritten. Hyaluronsäure (HA), als Hauptbestandteil der Extrazellulären Matrix (ECM) von Knorpel, stellt eine generell zytokompatible Umgebung dar, die Zellen von Natur aus Bindungsstellen zur Adhäsion und Fortbewegung bietet. Zudem ist bekannt, dass die funktionellen Gruppen von HA besonders gut für chemische Modifikationen geeignet sind. Aufgrund dieser Eigenschaften wird HA häufig als Material für das hydrogelbasierte Tissue Engineering verwendet. Durch die Verwendung von Poly(glycidol) (PG) als Cross-linker stehen die gleichen chemischen Eigenschaften wie bei der Verwendung des gängigen Cross-linkers Poly(ethylene glycol) (PEG) zur Verfügung, allerdings bietet es zusätzliche Seitenketten an jeder Wiederholungseinheit. Durch die Einführung von PG als multifunktionalem Cross-linker zur Herstellung von HA-Gelen ergibt sich letztlich eine höhere Vernetzungsdichte und damit auch ein größeres Potenzial für biomimetische Funktionalisierungen. Trotz dieser genannten Vorteile wird PG bisher noch nicht im Bereich der Knorpelregeneration verwendet. Das erste Ziel dieser Arbeit beinhaltete die Etablierung und Optimierung eines HA-basierten Hydrogels für die chondrogene Differenzierung von Mesenchymalen Stromazellen (MSCs). Hierzu wurden verschiedene Mengen und Derivate von Cross-linkern eingesetzt. Zunächst wurde die Hydrogelzusammensetzung mithilfe von verschiedenen PEG-Diacrylat (PEGDA)-Konzentrationen zur Vernetzung von thiolmodifizierter HA (Glycosil, HASH) mittels Michael-Addition optimiert. Das Ziel war hierbei die Herstellung eines volumenstabilen Konstrukts, das gleichzeitig die größtmögliche Ablagerung von ECM erlaubt. Histologische und biochemische Analysen zeigten in Bezug darauf, dass eine Konzentration von 0,4% PEGDA die zuvor genannten Anforderungen am besten erfüllte (Abschnitt 5.1.2). Um im weiteren Verlauf den Einfluss von verschiedenen Cross-linkern auf die chondrogene Differenzierung von MSCs zu untersuchen, wurde die HA-SH vergleichend mit PEGTA (0,6%) und PEGDA (0,4%) vernetzt. Nachfolgend wurde acryliertes PG (PG-Acr) als eine Alternative zu acrylierten PEG-Derivaten evaluiert. Der Vorteil in der Verwendung von PG-Acr (0,6%) im Vergleich zu PEGTA (0,6%) liegt darin, dass es eine ca. fünfmal höhere Anzahl an funktionellen Gruppen bietet, was wiederum ein deutlich höheres Maß an biomimetischer Funktionalisierung ermöglicht. Hierbei zeigte die Untersuchung der knorpelspezifischen ECM-Bestandteile keine grundlegenden Unterschiede zwischen beiden Cross-linkern, wobei durch die Verwendung von PG-Acr eine gleichmäßigere Ablagerung von Knorpelmatrix in die entsprechenden Gele zu erkennen war. Zusammenfassend lässt sich feststellen, dass die Möglichkeiten für eine biomimetische Funktionalisierung durch die Verwendung von PG-Acr deutlich erhöht wurden, ohne dabei die Chondrogenese von MSCs negativ zu beeinträchtigen (Abschnitt 5.1.3). Der nächste Teil dieser Arbeit befasste sich mit der umfangreichen biomimetischen Funktionalisierung von mit PG-Acr (0,6%) vernetzten HA-SH Hydrogelen. Hierzu wurden entweder biomimetische Peptide oder ein chondrogener Wachstumsfaktor kovalent in das Hydrogel eingebunden. Interessanterweise führte weder das Einbringen des N-Cadherin-mimetischen (HAV), des Kollagen II-bindenden (KLER), noch des Zelladhäsions-vermittelnden (RGD) Peptids zu einer Verbesserung der chondrogenen Differenzierung der MSCs. Beispielsweise führte das kovalente Anbinden von 2,5mM HAV zu einer Veränderung der Zellkernmorphologie und einer Verringerung der Glykosaminoglykan (GAG)-Produktion, wohingegen das Einbringen von 1,0mM RGD die Kollagenproduktion hemmte. Diese Ergebnisse könnten möglicherweise darauf zurückzuführen sein, dass die hier verwendeten HA-SH-Hydrogele selbst bereits ausreichend effizient für die chondrogene Differenzierung von MSCs sind. Im Vergleich dazu wurden die vorherigen Studien, die positive Effekte von Peptiden nachweisen konnten, entweder in neutralen PEG-Hydrogelen oder in wesentlich festeren MeHA-Hydrogelen durchgeführt [99, 101, 160]. Daraus lässt sich folgern, dass die Verwendung von Peptiden gerade unter ungünstigen Bedingungen von Bedeutung sein könnte und ein neutrales Gelsystem für die Untersuchung von einzelnen Peptideffekten geeignet scheint (Abschnitt 5.2.1). Als nächstes wurde exemplarisch der chondrogene Wachstumsfaktor Transforming Growth Factor Beta 1 (TGF-b1) kovalent an PG-Acr angebunden. Durch die Verwendung von kovalent gebundenem TGF-b1 könnte somit die Notwendigkeit einer wiederholten Zugabe von TGF-b1 bei in vivo-Anwendungen vermieden werden, was wiederum bei einer potentiellen klinischen Anwendung von Vorteil sein könnte. Deshalb wurde der Einfluss von kovalent gebundenem TGF-b1 auf die Chondrogenese von MSCs mit der gleichen Menge ungebundenem TGF-b1 (100nM TGF-b1) verglichen. Hierbei wurde ein signifikant positiver, dosisabhängiger Effekt von kovalent gebundenem TGF-b1 erfolgreich nachgewiesen. Die Chondrogenese von MSCs in Hydrogelen mit kovalent gebundenem TGF-b1 war dabei der Chondrogenese von MSCs in Hydrogelen, in die TGF-b1 lediglich gemischt wurde, deutlich überlegen. Dies wurde anhand von stärkeren Färbungen für GAGs, Gesamtkollagen, Aggrecan und Kollagen II in den TGF-b1-modifizierten Gelen gezeigt. Darüber hinaus bestätigten sowohl biochemische Analysen des GAG- und Kollagengehalts, als auch Western Blot-Analysen die histologischen Daten. Zusätzlich wurde der positive Effekt von kovalent gebundenem TGF-b1 durch erhöhte Expressionsraten der chondrogenen Markergene COL2A1, ACAN und SOX9 nachgewiesen. Zusammenfassend konnte gezeigt werden, dass durch die kovalente Bindung des Wachstumsfaktors TGF-b1 ein signifikant positiver Effekt auf die chondrogene Differenzierung von MSCs entsteht (Abschnitt 5.2.2). Generell stellen die auf Basis von Michael-Addition hergestellten PG-Acr-HA-SH-Hydrogele aufgrund ihrer hohen Acrylat-Funktionalität eine vielseitige Hydrogelplattform dar. So bieten diese Hydrogele zahlreiche Möglichkeiten für das Einbringen von verschiedensten biologischen Modifikationen wie die kovalente Bindung von biomimetischen Peptiden zusammen mit Wachstumsfaktoren in ein und demselben Zellträger. Anhand eines Proof-of-principle-Experiments wurde die generelle Eignung von reinen PG-Hydrogelen für die Evaluation von einzelnen Peptideffekten demonstriert. Dazu wurden die Hydrogele unter Verwendung der Thiol-ene-click-Reaktion hergestellt. In diesem Hydrogelsystem, ohne den unterstützenden Effekt von HA, zeigten MSCs eine verstärkte chondrogene Differenzierung in Anwesenheit von 1,0mM HAV. Diese ließ sich anhand von stärkeren Färbungen für GAGs, Aggrecan und Kollagen II nachweisen. Außerdem waren die GAG- und Gesamtkollagen-Werte deutlich erhöht. Hiermit wurde gezeigt, dass sich die vielseitig modifizierbaren, reinen PG-Hydrogele für die Analyse von Peptideffekten und deren Interaktion mit Wachstumsfaktoren eignen (Abschnitt 5.3). Der letzte Teil dieser Arbeit wurde im Rahmen des EU-Projektes HydroZONES durchgeführt, welches an der Entwicklung und Herstellung von zonalen Konstrukten arbeitet. Der Aspekt der zonalen Organisation von Knorpel rückte in den letzten Jahren verstärkt in den Fokus [127, 128], jedoch findet er im Bereich des Tissue Engineering noch immer wenig Beachtung. Deshalb wurde im Folgenden die zonale Verteilung von Zellen innerhalb eines Zellträgers realisiert. Dazu wurden zwei unterschiedlich zusammengesetzte Hydrogele mithilfe der Thiol-ene-click-Reaktion hergestellt: eine aus HA-SH(FMZ) bestehende untere Lage und eine darauf liegende Lage aus reinem PG. Hierbei gelang es stabile, zonale Konstrukte herzustellen, in denen MSCs in beiden Zonen chondrogen differenzierten, was anhand von GAG- und Kollagen II-Färbungen, sowie durch die Quantifizierung des GAG-Gehalts bestätigt wurde. Hiermit konnte ein aus zwei verschiedenen Hydrogelen zusammengesetztes zonales Konstrukt erfolgreich hergestellt werden (Abschnitt 5.4). Durch den erstmaligen Einsatz des multifunktionalen Cross-linkers PG-Acr für das Tissue Engineering von Knorpel wurde ein auf Michael-Addition basierendes, vielseitiges HA-SH-Hydrogelsystem etabliert. Das hier vorgestellte Hydrogelsystem besitzt das Potenzial zukünftig als eine einfach anwendbare und vielseitige Toolbox zur Herstellung von biomimetischen Hydrogelen für die zellbasierte Knorpelregeneration verwendet zu werden. Vor allem könnte dabei der Einsatz von Stützstrukturen von entscheidender Bedeutung sein, um die mechanische Widerstandskraft der Zellträger zu erhöhen und somit das Potenzial für klinische Anwendungen zu vergrößern. Zusätzlich wurde gezeigt, dass Thiol-ene-click-Hydrogele sowohl zur Herstellung von zellbeladenen, reinen PG-Gelen, als auch zur Herstellung von deutlich komplexeren, zonalen Konstrukten geeignet sind. Diese Thiol-ene-click-Hydrogele wurden bereits erfolgreich weiterentwickelt und für 3D-Bioprinting-Prozesse verwendet [204]. 3D-Bioprinting ist eine Teildisziplin des sich immer weiter entwickelnden Feldes der Biofabrikation [205]. Die Verwendung in diesem Bereich verändert zwar die Anforderungen an die hierfür verwendeten Hydrogele, ermöglicht es aber gleichzeitig deutlich komplexere sowie hierarchische Strukturen herzustellen und kleinere Lagen noch exakter zu positionieren [159, 206–209]. Da in den hier vorgestellten Thiol-ene-click-Hydrogelen eine deutliche chondrogene Differenzierung von MSCs nachgewiesen wurde, ist es vorstellbar, dass sie als Basis für die Herstellung sogenannter Bioinks dienen, welche in zukünftigen, anspruchsvollen Biofabrikationsprozessen Anwendung finden sollen. KW - Hyaluronsäure KW - Hydrogel KW - Knorpel KW - Tissue Engineering KW - Hyaluronic acid KW - Poly(glycidol) KW - Hydrogel KW - Cartilage Regeneration KW - Mesenchymal Stromal Cells Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155345 ER - TY - THES A1 - Däullary, Thomas T1 - Establishment of an infection model of the human intestinal epithelium to study host and pathogen determinants during the \(Salmonella\) Typhimurium infection process T1 - Etablierung eines Infektionsmodells des menschlichen Darmepithels zur Untersuchung von Wirts- und Erregerdeterminanten während des \(Salmonella\) Typhimurium-Infektionsprozesses N2 - According to the WHO, foodborne derived enteric infections are a global disease burden and often manifest in diseases that can potentially reach life threatening levels, especially in developing countries. These diseases are caused by a variety of enteric pathogens and affect the gastrointestinal tract, from the gastric to the intestinal to the rectal tissue. Although the complex mucosal structure of these organs is usually well prepared to defend the body against harmful agents, specialised pathogens such as Salmonella enterica can overcome the intestinal defence mechanism. After ingestion, Salmonella are capable of colonising the gut and establishing their proliferative niche, thereby leading to inflammatory processes and tissue damage of the host epithelium. In order to understand these processes, the scientific community in the last decades mostly used cell line based in vitro approaches or in vivo animal studies. Although these approaches provide fundamental insights into the interactions between bacteria and host cells, they have limited applicability to human pathology. Therefore, tissue engineered primary based approaches are important for modern infection research. They exhibit the human complexity better than traditional cell lines and can mimic human-obligate processes in contrast to animal studies. Therefore, in this study a tissue engineered human primary model of the small intestinal epithelium was established for the application of enteric infection research with the exemplary pathogen Salmonella Typhimurium. To this purpose, adult stem cell derived intestinal organoids were used as a primary human cell source to generate monolayers on biological or synthetic scaffolds in a Transwell®-like setting. These tissue models of the intestinal epithelium were examined for their comparability to the native tissue in terms of morphology, morphometry and barrier function. Further, the gene expression profiles of organotypical mucins, tight junction-associated proteins and claudins were investigated. Overall, the biological scaffold-based tissue models showed higher similarity to the native tissue - among others in morphometry and polarisation. Therefore, these models were further characterised on cellular and structural level. Ultrastructural analysis demonstrated the establishment of characteristic microvilli and tight-junction connections between individual epithelial cells. Furthermore, the expression pattern of typical intestinal epithelial protein was addressed and showed in vivo-like localisation. Interested in the cell type composition, single cell transcriptomic profiling revealed distinct cell types including proliferative cells and stem cells, progenitors, cellular entities of the absorptive lineage, Enterocytes and Microfold-like cells. Cells of the secretory lineage were also annotated, but without distinct canonical gene expression patterns. With the organotypical polarisation, protein expression, structural features and the heterogeneous cell composition including the rare Microfold-like cells, the biological scaffold-based tissue model of the intestinal epithelium demonstrates key requisites needed for infection studies with Salmonella. In a second part of this study, a suitable infection protocol of the epithelial tissue model with Salmonella Typhimurium was established, followed by the examination of key features of the infection process. Salmonella adhered to the epithelial microvilli and induced typical membrane ruffling during invasion; interestingly the individual steps of invasion could be observed. After invasion, time course analysis showed that Salmonella resided and proliferated intracellularly, while simultaneously migrating from the apical to the basolateral side of the infected cell. Furthermore, the bacterial morphology changed to a filamentous phenotype; especially when the models have been analysed at late time points after infection. The epithelial cells on the other side released the cytokines Interleukin 8 and Tumour Necrosis Factor α upon bacterial infection in a time-dependent manner. Taken together, Salmonella infection of the intestinal epithelial tissue model recapitulates important steps of the infection process as described in the literature, and hence demonstrates a valid in vitro platform for the investigation of the Salmonella infection process in the human context. During the infection process, intracellular Salmonella populations varied in their bacterial number, which could be attributed to increased intracellular proliferation and demonstrated thereby a heterogeneous behaviour of Salmonella in individual cells. Furthermore, by the application of single cell transcriptomic profiling, the upregulation of Olfactomedin-4 (OLFM4) gene expression was detected; OLFM4 is a protein involved in various functions including cell immunity as well as proliferating signalling pathways and is often used as intestinal stem cell marker. This OLFM4 upregulation was time-dependent, restricted to Salmonella infected cells and seemed to increase with bacterial mass. Investigating the OLFM4 regulatory mechanism, nuclear factor κB induced upregulation could be excluded, whereas inhibition of the Notch signalling led to a decrease of OLFM4 gene and protein expression. Furthermore, Notch inhibition resulted in decreased filamentous Salmonella formation. Taken together, by the use of the introduced primary epithelial tissue model, a heterogeneous intracellular bacterial behaviour was observed and a so far overlooked host cell response – the expression of OLFM4 by individual infected cells – could be identified; although Salmonella Typhimurium is one of the best-studied enteric pathogenic bacteria. This proves the applicability of the introduced tissue model in enteric infection research as well as the importance of new approaches in order to decipher host-pathogen interactions with higher relevance to the host. N2 - Nach Angaben der WHO stellen lebensmittelbedingte Darminfektionen eine globale Krankheitslast dar und äußern sich häufig in Krankheiten, die potenziell lebensbedrohliche Ausmaße annehmen können, insbesondere in Entwicklungsländern. Diese Krankheiten werden durch eine Vielzahl von enterischen Erregern verursacht und betreffen den Magen-Darm-Trakt, vom Magen über den Darm bis zum Enddarm. Obwohl die komplexe Schleimhautstruktur dieser Organe in der Regel gut darauf vorbereitet ist, den Körper vor schädlichen Reagenzien zu schützen, können spezialisierte Erreger wie Salmonella enterica den Abwehrmechanismus des Darms überwinden. Nach der Nahrungsaufnahme sind Salmonellen in der Lage, den Darm zu kolonisieren und ihre proliferative Nische zu etablieren, was letztlich zu entzündlichen Prozessen und Gewebeschäden des Wirtsepithels führt. Um diese Prozesse zu verstehen, hat die Wissenschaft in den letzten Jahrzehnten hauptsächlich auf Krebslinien basierende in vitro-Ansätze oder in vivo-Tierstudien verwendet. Obwohl diese Ansätze grundlegende Erkenntnisse über die Wechselwirkungen zwischen Bakterien und Wirtszellen lieferten, sind sie nur begrenzt auf die Pathologie des Menschen übertragbar. Daher sind Tissue engineering und primärzellbasierte Ansätze für die moderne Infektionsforschung wichtig. Sie spiegeln die menschliche Komplexität besser wider als Ansätze mit Krebszellen und können im Gegensatz zu Tierversuchen human-obligate Prozesse nachbilden. Daher wurde in dieser Studie ein tissue engineered humanes Primärmodell des Dünndarmepithels für die Anwendung in der enterischen Infektionsforschung am Beispiel des Erregers Salmonella Typhimurium etabliert. Zu diesem Zweck wurden aus adulten Stammzellen gewonnene Darmorganoide als primäre humane Zellquelle verwendet, um 2D-Monolayer auf biologischen oder synthetischen Trägestrukturen in einer Transwell®-ähnlichen Umgebung zu erzeugen. Die so erzeugten Gewebemodelle des Darmepithels wurden auf ihre Vergleichbarkeit mit dem nativen Gewebe in Bezug auf Morphologie, Morphometrie und Barrierefunktion untersucht. Weiterhin wurde die Genexpression von organtypischen Muzinen, Tight Junction-assoziierten Proteinen und Claudinen sowie das Expressionsmuster der Tight Junction-Proteine untersucht. Insgesamt wiesen die auf biologischen Matrizes basierenden Gewebemodelle eine größere Ähnlichkeit mit dem nativen Gewebe auf - unter anderem in Bezug auf Morphometrie und Polarisation -, weshalb diese Modelle auf zellulärer und struktureller Ebene tiefgehender charakterisiert wurden. Die ultrastrukturelle Analyse zeigte die Ausbildung charakteristischer Mikrovilli und Tight-Junction-Verbindungen zwischen einzelnen Epithelzellen. Darüber hinaus wurden die Expressionsmuster typischer Darmepithelproteine untersucht, die eine in vivo ähnliche Lokalisation aufwiesen. Im Hinblick auf die Zelltypenzusammensetzung ergab die Analyse des Transkriptoms auf Einzel-Zell-Ebene definierte Zelltypen. Dies waren Zellen mit proliferativem Profil, Stammzellen und Vorläuferzellen, und Zellen der absorptiven Linie, Enterozyten und Microfold-Zellen. Zellen der sekretorischen Linie wurden ebenfalls annotiert, jedoch ohne eindeutige kanonische Genexpression. Mit der organotypischen Polarisierung, der Proteinexpression, den strukturellen Merkmalen und der heterogenen Zellzusammensetzung, einschließlich der seltenen Microfold-Zellen, weist das auf einer biologischen Matrix basierende Gewebemodell des Darmepithels die wichtigsten Voraussetzungen für Infektionsstudien mit Salmonellen auf. Im zweiten Teil dieser Studie wurde ein geeignetes Infektionsprotokoll für das Epithelgewebemodell mit Salmonella Typhimurium erstellt, gefolgt von der Untersuchung der wichtigsten Merkmale des Infektionsprozesses. Salmonella hafteten an den epithelialen Mikrovilli und verursachten während der Invasion das typische Membran-Kräuseln; interessanterweise konnten die Schritte der Invasion einzeln beobachtet werden. Nach der Invasion zeigte die Zeitverlaufsanalyse der Infektion, dass die Salmonellen intrazellulär lokalisierten und replizierten, während sie gleichzeitig von der apikalen zur basolateralen Seite der infizierten Zelle migrierten. Darüber hinaus veränderte sich die Morphologie der Bakterien in der Spätphase der Infektion zu einem filamentösen Phänotyp. Die Epithelzellen auf der anderen Seite setzten nach der bakteriellen Infektion zeitabhängig die Zytokine Interleukin 8 und Tumor-Nekrose-Faktor-α frei. Insgesamt rekapituliert die Salmonelleninfektion des intestinalen Epithelgewebemodells wichtige Schritte des Infektionsprozesses, wie sie in der Literatur beschrieben sind und stellt somit eine valide in vitro Plattform für die Untersuchung des Salmonelleninfektionsprozesses in einem menschlichen Kontext dar. Interessanterweise variierten die intrazellulären Salmonellenpopulationen während des Infektionsprozesses in ihrer Bakterienzahl, was auf eine erhöhte intrazelluläre Proliferation zurückgeführt werden konnte und somit ein heterogenes Verhalten der Salmonellen in einzelnen Zellen demonstriert. Darüber hinaus wurde durch die Anwendung von Einzel-Zell-Transkriptom-Analysen die Hochregulierung der Genexpression von Olfactomedin-4 (OLFM4) nachgewiesen; OLFM4 ist ein Protein mit verschiedenen Funktionen, darunter Prozesse der Zellimmunität sowie proliferierende Signalwege, und es wird häufig als Darmstammzellmarker verwendet. Diese OLFM4-Hochregulierung war zeitabhängig, auf mit Salmonella infizierten Zellen beschränkt und schien mit der intrazellulären Bakterienmasse zuzunehmen. Bei der Untersuchung der OLFM4-Regulationsmechanismen konnte eine nuclear factor κB-induzierte Hochregulierung ausgeschlossen werden, während die Hemmung der Notch-Signalübertragung zu einem Rückgang der OLFM4-Gen- und Proteinexpression führte. Darüber hinaus führte die Hemmung von Notch zu einer verminderten Bildung von filamentösen Salmonella. Insgesamt konnte durch die Verwendung des hier eingeführten primären Epithelgewebemodells ein heterogenes intrazelluläres bakterielles Verhalten beobachtet und eine bisher übersehene Wirtszellantwort - die Expression von OLFM4 durch einzelne infizierte Zellen - bei einem der am besten untersuchten enterischen Pathogene identifiziert werden. Dies beweist die Anwendbarkeit des vorgestellten Gewebemodells in der enterischen Infektionsforschung sowie die Bedeutung neuer Ansätze zur Entschlüsselung von Wirt-Pathogen-Interaktionen mit höherer Relevanz für den Wirt. KW - Salmonella typhimurium KW - Tissue Engineering KW - Darmepithel KW - Infektion KW - Infektionsmodell KW - menschliches Darmepithel KW - Infektionsprozess KW - Gewebemodell KW - Wirt-Erreger Interaktion KW - infectionmodel KW - human intestinal epithelium KW - infectionprocess KW - Host-pathogen interaction KW - tissue model Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311548 ER - TY - THES A1 - Fey, Christina T1 - Establishment of an intestinal tissue model for pre-clinical screenings T1 - Etablierung eines Darmgewebemodells für Präklinische Screenings N2 - The small intestine represents a strong barrier separating the lumen from blood circulation thereby playing a major role in the absorption and the transport of pharmacological agents prior to their arrival on the respective target site. In order to gain more knowledge about specialized uptake mechanisms and risk assessment for the patient after oral admission of drugs, intestinal in vitro models demonstrating a close similarity to the in vivo situation are needed. In the past, cell line-based in vitro models composed of Caco-2 cells cultured on synthetic cell carriers represented the “gold standard” in the field of intestinal tissue engineering. Expressive advantages of these models are a reproducible, cost-efficient and standardized model set up, but cell function can be negatively influenced by the low porosity or unwanted molecular adhesion effects of the artificial scaffold material. Natural extracellular matrices (ECM) such as the porcine decellularized small intestinal submucosa (SIS) are used as alternative to overcome some common drawbacks; however, the fabrication of these scaffolds is time- and cost-intensive, less well standardized and the 3Rs (replacement, reduction, refinement) principle is not entirely fulfilled. Nowadays, biopolymer-based scaffolds such as the bacterial nanocellulose (BNC) suggest an interesting option of novel intestinal tissue engineered models, as the BNC shows comparable features to the native ECM regarding fiber arrangement and hydrophilic properties. Furthermore, the BNC is of non-animal origin and the manufacturing process is faster as well as well standardized at low costs. In this context, the first part of this thesis analyzed the BNC as alternative scaffold to derive standardized and functional organ models in vitro. Therefore, Caco-2 cells were cultured on two versions of BNC with respect to their surface topography, the unmodified BNC as rather smooth surface and the surface-structured BNC presenting an aligned fiber arrangement. As controls, Caco-2 in vitro models were set up on PET and SIS matrices. In this study, the BNC-based models demonstrated organ-specific properties comprising typical cellular morphologies, a characteristic tight junction protein expression profile, representative ultrastructural features and the formation of a tight epithelial barrier together with a corresponding transport activity. In summary, these results validated the high quality of the BNC-based Caco-2 models under cost-efficient conditions and their suitability for pre-clinical research purposes. However, the full functional diversity of the human intestine cannot be presented by Caco-2 cells due to their tumorigenic background and their exclusive representation of mature enterocytes. Next to the scaffold used for the setup of in vitro models, the cellular unit mainly drives functional performance, which demonstrates the crucial importance of mimicking the cellular diversity of the small intestine in vitro. In this context, intestinal primary organoids are of high interest, as they show a close similarity to the native epithelium regarding their cellular diversity comprising enterocytes, goblet cells, enteroendocrine cells, paneth cells, transit amplifying cells and stem cells. In general, such primary organoids grow in a 3D Matrigel® based environment and a medium formulation supplemented with a variety of growth factors to maintain stemness, to inhibit differentiation and to stimulate cell migration supporting long term in vitro culture. Intestinal primary spheroid/organoid cultures were set up as Transwell®-like models on both BNC variants, which resulted in a fragmentary cell layer and thereby unfavorable properties of these scaffold materials under the applied circumstances. As the BNC manufacturing process is highly flexible, surface properties could be adapted in future studies to enable a good cell adherence and barrier formation for primary intestinal cells, too. However, the application of these organoid cultures in pre-clinical research represents an enormous challenge, as the in vitro culture is complex and additionally time- and cost-intensive. With regard to the high potential of primary intestinal spheroids/organoids and the necessity of a simplified but predictive model in pre-clinical research purposes, the second part of this thesis addressed the establishment of a primary-derived immortalized intestinal cell line, which enables a standardized and cost-efficient culture (including in 2D), while maintaining the cellular diversity of the organoid in vitro cultures. In this study, immortalization of murine and human intestinal primary organoids was induced by ectopic expression of a 10- (murine) or 12 component (human) pool of genes regulating stemness and the cell cycle, which was performed in cooperation with the InSCREENeX GmbH in a 2D- and 3D-based transduction strategy. In first line, the established cell lines (cell clones) were investigated for their cell culture prerequisites to grow under simplified and cost-efficient conditions. While murine cell clones grew on uncoated plastic in a medium formulation supplemented with EGF, Noggin, Y-27632 and 10% FCS, the human cell clones demonstrated the necessity of a Col I pre coating together with the need for a medium composition commonly used for primary human spheroid/organoid cultures. Furthermore, the preceding analyses resulted in only one human cell clone and three murine cell clones for ongoing characterization. Studies regarding the proliferative properties and the specific gene as well as protein expression profile of the remaining cell clones have shown, that it is likely that transient amplifying cells (TACs) were immortalized instead of the differentiated cell types localized in primary organoids, as 2D, 3D or Transwell®-based cultures resulted in slightly different gene expression profiles and in a dramatically reduced mRNA transcript level for the analyzed marker genes representative for the differentiated cell types of the native epithelium. Further, 3D cultures demonstrated the formation of spheroid-like structures; however without forming organoid-like structures due to prolonged culture, indicating that these cell populations have lost their ability to differentiate into specific intestinal cell types. The Transwell®-based models set up of each clone exhibit organ-specific properties comprising an epithelial-like morphology, a characteristic protein expression profile with an apical mucus-layer covering the villin-1 positive cell layer, thereby representing goblet cells and enterocytes, together with representative tight junction complexes indicating an integer epithelial barrier. The proof of a functional as well as tight epithelial barrier in TEER measurements and in vivo-like transport activities qualified the established cell clones as alternative cell sources for tissue engineered models representing the small intestine to some extent. Additionally, the easy handling and cell expansion under more cost-efficient conditions compared to primary organoid cultures favors the use of these newly generated cell clones in bioavailability studies. Altogether, this work demonstrated new components, structural and cellular, for the establishment of alternative in vitro models of the small intestinal epithelium, which could be used in pre-clinical screenings for reproducible drug delivery studies. N2 - Der Dünndarm bildet eine starke Barriere aus, welche das Lumen vom Blutkreislauf trennt, und dadurch maßgeblich an der Absorption und dem Transport von pharmakologischen Wirkstoffen beteiligt ist, bevor diese ihren Wirkort erreichen. Um ein detaillierteres Wissen über die speziellen Aufnahmemechanismen zu erlangen und zur Risikoabschätzung für den Patienten nach oraler Aufnahme dieser Medikamente, sind intestinale in vitro Modelle erforderlich, die eine große Ähnlichkeit mit der Situation in vivo aufweisen. In der Vergangenheit stellten Caco-2 Zelllinien-basierte in vitro Modelle, die auf synthetischen Trägerstrukturen aufgebaut sind, den „Goldstandard“ auf dem Gebiet der intestinalen Geweberekonstruktion dar. Bedeutende Vorteile dieser Modelle sind der reproduzierbare, kosteneffiziente und standardisierte Modellaufbau, jedoch können die zellulären Funktionen durch die geringe Porosität oder die unerwünschten molekularen Adhäsionseffekte des künstlichen Trägermaterials negativ beeinflusst werden. Um einige häufige Nachteile zu überwinden werden natürliche extrazelluläre Matrizen (ECM) wie die porzine dezellularisierte Dünndarm-submukosa (SIS) verwendet, jedoch ist die Herstellung dieser Trägerstrukturen zeit- und kostenintensiv, weniger gut standardisiert und entspricht nicht ganzheitlich dem 3R-Prinzip (Replace = Vermeiden, Reduce = Verringern, Refine = Verbessern). Heutzutage ermöglichen biopolymer-basierte Trägerstrukturen wie die bakterielle Nanozellulose (BNC) die Entwicklung von neuartigen intestinalen Gewebemodellen, da die BNC eine große Ähnlichkeit hinsichtlich der Faseranordnung und der hydrophilen Eigenschaften mit der nativen ECM aufweist. Darüber hinaus ist die BNC nicht tierischen Ursprungs und der Herstellungsprozess schneller, gut standardisiert als auch kostengünstig. In diesem Zusammenhang wurde im ersten Teil dieser Arbeit nachgewiesen, dass die BNC als alternative Trägerstruktur für standardisierte und funktionelle Organmodelle in vitro geeignet ist. Dafür wurden Caco-2 Zellen auf zwei Varianten der BNC kultiviert, die sich in ihrer Oberflächentopographie unterscheiden, wobei die nicht-modifizierte BNC eine glatte Oberfläche und die oberflächen-strukturierte BNC eine ausgerichtete Faseranordnung aufweist. Als Kontrollen dienten Caco 2 zellbasierte in vitro Modelle, die auf PET- oder SIS Matrizes aufgebaut wurden. In dieser Studie wiesen die BNC-basierten Modelle die wichtigsten organ-spezifischen Eigenschaften auf, darunter eine typische zelluläre Morphologie, ein charakteristisches Expressionsprofil der Tight Junction Proteine, repräsentative ultrastrukturelle Merkmale und die Bildung einer dichten epithelialen Barriere verbunden mit einer entsprechenden Transportaktivität. Zusammenfassend bestätigten diese Ergebnisse die hohe Qualität der BNC-basierten Caco-2 Modelle unter kosteneffizienten Herstellbedingungen und ihre Eignung für präklinische Forschungszwecke. Allerdings kann die volle Funktionsvielfalt des menschlichen Darms durch Caco-2 Zellen aufgrund ihres kanzerogenen Ursprungs und der exklusiven Repräsentanz von Enterozyten nicht abgebildet werden. Neben der Trägerstruktur die für den Aufbau der in vitro Modelle verwendet wird, trägt auch die zelluläre Einheit zur Etablierung von funktionalen Modellen bei, weshalb es von großer Bedeutung ist, die zelluläre Vielfalt des Dünndarms in diesen Modellen in vitro nachzuahmen. In diesem Zusammenhang sind die primären intestinalen Organoide, die sich hauptsächlich aus Enterozyten, Becherzellen, enteroendokrinen Zellen, Paneth Zellen, Vorläuferzellen und Stammzellen zusammensetzen, von großem Interesse, da die zelluläre Komponente eine große Ähnlichkeit zum nativen Epithel aufweist. Derartige primäre Organoide werden üblicherweise in einer 3D-Matrigel® Umgebung und einer speziellen Formulierung des Mediums, die mit einer Vielzahl an Wachstumsfaktoren ergänzt wird, um das Stammzellpotenzial zu erhalten, die Differenzierung zu hemmen, die Zellmigration zu stimulieren und somit eine langfristige in vitro-Kultivierung zu unterstützt. Intestinale primäre Sphäroid-/Organoidkulturen wurden auf beiden BNC Varianten als Transwell®-ähnliche Modelle aufgebaut. Dabei zeigte sich eine fragmentierte Zellschicht was darauf schließen lässt, dass die Matrix unter diesen Bedingungen für den Modellaufbau ungeeignet ist. Da der BNC-Herstellungsprozess sehr flexibel ist, könnten die Oberflächen-eigenschaften in zukünftigen Studien angepasst werden, um so eine gute Zelladhäsion auch für primäre Darmzellen zu ermöglichen. Die Anwendung dieser Organoid-basierten Kulturen stellt jedoch für die präklinische Forschung eine enorme Herausforderung dar, da die Kultivierung komplex und zudem sehr zeit- und kosten-intensiv ist. Im Hinblick auf das hohe Potenzial der primären intestinalen Sphäroide/Organoide und der Notwendigkeit eines vereinfachten aber prädiktiven Modells für präklinische Forschungs-zwecke, befasste sich der zweite Teil der Arbeit mit der Etablierung einer primären immortalisierten intestinalen Zelllinie, die eine standardisierte und kosteneffiziente Kultur ermöglicht, wobei die zelluläre Vielfalt der in vitro Organoid-Kulturen erhalten bleibt. In dieser Studie wurden primäre Organoide aus dem murinen und dem menschlichen Dünndarm durch die ektopische Expression eines 10- (murin) bzw. 12 Komponenten (human) Pools von Genen, welche im Hinblick auf die Regulation der Stammzellen und dem Zellzyklus bekannt sind, in Zusammenarbeit mit der InSCREENeX GmbH in einer 2D- und 3D-basierten Transduktionsstrategie immortalisiert. In erster Linie wurden die etablierten Zelllinien (Zellklone) auf ihren Bedarf an Wachstumsfaktoren für die Kultivierung unter vereinfachten und kosteneffizienten Bedingungen hin untersucht. Während die murinen Zellklone auf unbeschichteten Kunststoff in einer Mediumformulierung mit hEGF, mNoggin, Y-27632 und 10% FCS wuchsen, zeigten die humanen Zellklone eine Notwendigkeit für eine Col I-Vorbeschichtung zusammen mit einer Zusammensetzung des Mediums, wie sie üblicherweise für primäre humane Sphäroide/Organoide verwendet wird. Darüber hinaus führten diese vorangegangenen Analysen dazu, dass nur ein humaner Zellklon und drei murine Zellklone umfänglich charakterisiert wurden. Studien zu proliferativen Eigenschaften und spezifischen Gen- sowie Proteinexpressionsprofilen dieser Klone haben gezeigt, dass vermutlich Vorläuferzellen (TACs) anstelle der differenzierten Zelltypen der primären Organoide immortalisiert wurden, da die Kultivierung in 2D, 3D oder in Transwell®-basierten Modellen zu einem geringfügig veränderten Genexpressionsprofil im Vergleich untereinander und zudem zu einem stark reduzierten mRNA-Transkriptionswert für die analysierten Markergene, welche die differenzierten Zelltypen des nativen Epithels repräsentieren, die Folge war. Weiterhin zeigte die 3D-Kultivierung die Bildung von Sphäroid-ähnlichen Strukturen, jedoch keine Organoid-ähnlichen Strukturen unter verlängerten Kultur-bedingungen, was darauf hinweist, dass diese Zellpopulationen ihre Eigenschaft zur Differenzierung hin zu spezifischen intestinalen Zelltypen eingebüßt haben. Die Transwell®-basierten Modelle, welche für jeden Klon etabliert wurden, weisen zudem Organ-spezifische Eigenschaften auf, wie eine epitheliale Morphologie, ein charakteristisches Protein-expressionsprofil mit einer apikalen Schleimschicht, welche den Villin-1 positiven Zelllayer bedeckt und somit den Nachweis erbringt, dass die entstandenen immortalisierten Zellpopulationen zu einem gewissen Anteil aus Becherzellen und Enterozyten bestehen. Zudem konnten repräsentative Tight-Junction Komplexe, die auf eine dichte epitheliale Barriere hinweisen, in entsprechenden Proteinexpressionsprofilanalysen nachgewiesen werden. Der Nachweis einer sowohl dichten als auch funktionellen epithelialen Barriere konnte weitergehend durch TEER-Messungen und in vivo-ähnliche Transportmechanismen für die etablierten Zellklone qualifiziert werden, wodurch diese Zellen als alternative Zellquelle für in vitro Modelle des Dünndarms verwendet werden können. Darüber hinaus begünstigt die einfache Handhabung und Zellexpansion unter kostengünstigeren Bedingungen im Vergleich zu primären Organoidkulturen den Einsatz dieser neu-generierten Zellklone für Bioverfügbarkeits-Studien. Zusammenfassend zeigte diese Arbeit neue Komponenten, strukturelle und zelluläre, für die Etablierung alternativer in vitro-Modelle des Dünndarmepithels, die in präklinischen Screenings für reproduzierbare Studien hinsichtlich der Medikamententestung verwendet werden können. KW - Dünndarm KW - In vitro KW - Tissue Engineering KW - intestinal in vitro model KW - bacterial nanocellulose KW - primary-cell-derived immortalized cell line KW - in vitro Modelle KW - Bakterielle Nanocellulose KW - Primär-basierte immortalisierte Zelllinie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244107 ER - TY - THES A1 - Gensler, Marius E. T1 - Simultaneous printing of tissue and customized bioreactor T1 - Simultanes Drucken von Gewebe und angepasstem Bioreaktor N2 - Additive manufacturing processes such as 3D printing are booming in the industry due to their high degree of freedom in terms of geometric shapes and available materials. Focusing on patient-specific medicine, 3D printing has also proven useful in the Life Sciences, where it exploits the shape fidelity for individualized tissues in the field of bioprinting. In parallel, the current systems of bioreactor technology have adapted to the new manufacturing technology as well and 3D-printed bioreactors are increasingly being developed. For the first time, this work combines the manufacturing of the tissue and a tailored bioreactor, significantly streamlining the overall process and optimally merging the two processes. This way the production of the tissues can be individualized by customizing the reactor to the tissue and the patient-specific wound geometry. For this reason, a common basis and guideline for the cross-device and cross-material use of 3D printers was created initially. Their applicability was demonstrated by the iterative development of a perfusable bioreactor system, made from polydimethylsiloxane (PDMS) and a lignin-based filament, into which a biological tissue of flexible shape can be bioprinted. Cost-effective bioink-replacements and in silico computational fluid dynamics simulations were used for material sustainability and shape development. Also, nutrient distribution and shear stress could be predicted in this way pre-experimentally. As a proof of functionality and adaptability of the reactor, tissues made from a nanocellulose-based Cellink® Bioink, as well as an alginate-based ink mixed with Me-PMeOx100-b-PnPrOzi100-EIP (POx) (Alginate-POx bioink) were successfully cultured dynamically in the bioreactor together with C2C12 cell line. Tissue maturation was further demonstrated using hMSC which were successfully induced to adipocyte differentiation. For further standardization, a mobile electrical device for automated media exchange was developed, improving handling in the laboratory and thus reduces the probability of contamination. N2 - Additive Fertigungsverfahren wie der 3D-Druck boomen in der Industrie aufgrund ihres hohen Freiheitsgrads in Bezug auf geometrische Formen und verfügbare Materialien. Mit Blick auf die patientenspezifische Medizin hat sich der 3D-Druck auch in den Biowissenschaften bewährt, wo er die Formtreue für individualisierte Gewebe im Bereich des Bioprinting nutzt. Parallel dazu haben sich auch die derzeitigen Systeme der Bioreaktortechnologie an die neue Fertigungstechnologie angepasst, und es werden zunehmend 3D-gedruckte Bioreaktoren entwickelt. In dieser Arbeit werden erstmals die Herstellung des Gewebes und ein maßgeschneiderter Bioreaktor kombiniert, wodurch der Gesamtprozess erheblich gestrafft und beide Verfahren optimal zusammengeführt werden. Auf diese Weise kann die Herstellung der Gewebe individualisiert werden, indem der Reaktor an das Gewebe und die patientenspezifische Wundgeometrie angepasst wird. Aus diesem Grund wurde zunächst eine gemeinsame Basis und Leitlinie für den Geräte- und Materialübergreifenden Einsatz von 3D-Druckern geschaffen. Deren Anwendbarkeit wurde durch die iterative Entwicklung eines perfundierbaren Bioreaktorsystems aus Polydimethylsiloxan (PDMS) und einem Lignin-basierten Filament demonstriert, in das ein biologisches Gewebe mit flexibler Form gedruckt werden kann. Kostengünstige Biotintenalternativen und emph in silico Computational Fluid Dynamics Simulationen wurden für eine materialschonende Formentwicklung verwendet. Nährstoffverteilung und Scherspannung konnten auf diese Weise präexperimentell vorhergesagt werden. Als Beweis für die Funktionalität und Anpassbarkeit des Reaktors wurden Gewebe aus einer Cellink® Bioink auf Nanocellulosebasis sowie einer Tinte auf Alginatbasis, welche mit Me-PMeOx100-b-PnPrOzi100-EIP (POx) gemischt wurde (Alginat-POx-Bioink), erfolgreich zusammen mit C2C12-Zelllinie dynamisch im Reaktor kultiviert. Die Gewebereifung wurde außerdem mit hMSC demonstriert, die erfolgreich zur adipozyten Differenzierung induziert wurden. Zur weiteren Standardisierung wurde ein mobiles elektrisches Gerät für den automatischen Medienwechsel entwickelt, welches die Handhabung im Labor verbessert und damit die Wahrscheinlichkeit einer Kontamination deutlich verringert. KW - 3 D bioprinting KW - Tissue Engineering KW - Bioreactor Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-280190 ER - TY - THES A1 - Haddad-Weber, Meike T1 - Development of stem cell-based ACL- and tendon reconstruction T1 - Entwicklung Stammzell-basierter Konstrukte für den Kreuzband- und Sehnenersatz N2 - Ruptures of the anterior cruciate ligament (ACL) and defects of the rotator cuff represent the most common ligament and tendon injuries in knee and shoulder. Both injuries represent significant implications for the patients. After an injury, the ACL and the rotator cuff both exhibit poor intrinsic healing capacities. In order to prevent further defects such as arthritis of the knee and fatty infiltration of the rotator cuff, surgical interaction is essential. In both cases, the currently used surgical techniques are far from optimal because even after the therapy many patients report problems ranging from pain and reduced mobility to complete dysfunction of the involved joint and muscles. Tissue engineering may be a possible solution. It is a promising field of regenerative medicine and might be an advantageous alternative for the treatment of musculoskeletal injuries and diseases in the near future. In this thesis, different tissue engineering based approaches were investigated. For the reconstruction of damaged or diseased ligaments and tendons, the use of MSCs and gene therapy with growth factors is especially suitable and possesses a great therapeutic potential. Therefore, the first method studied and tested in this thesis was the development of a biomaterial based construct for the repair of a ruptured ACL. The second approach represents a cell based strategy for the treatment of the fatty infiltration in the rotator cuff. The third approach was a combined cell, biomaterial, and growth factor based strategy for ACL ruptures. Biomaterial based ACL construct The implant is currently tested in a preclinical in vivo study in mini pigs. This proof-of-principle study is performed to validate the functional capability of the collagen fiber based implant under load in vivo and its population with fibroblasts which produce a ligamentogenic matrix. Cell based treatment of the fatty infiltration in the rotator cuff Regarding the treatment of the fatty infiltration of the rotator cuff in a rabbit model, the in vivo results are also promising. The group treated with autologous MSCs (+MSC group) showed a lower fat content than the untreated group (–MSC group) 6 weeks after the treatment. Furthermore, the SSP muscle of the MSC-treated animals revealed macroscopically and microscopically only few differences compared to the healthy control group. The exact underlying mechanisms leading to the positive results of the treatment are not yet fully understood and have therefore to be further investigated in the future. Cell, biomaterial, and growth factor based treatment of ACL ruptures Studies described in current literature show that collagen hydrogel scaffolds are not ideal for a complete ligament or tendon reconstruction, because of their insufficient mechanical stability. Introduced as an alternative and superior therapy, the combined strategy used in this thesis proves that the cultivation of BMP-12, -13, and IGF-1 transduced MSCs and ACL fibroblasts in a collagen hydrogel is successful. The results of the performed in vitro study reveal that the cells exhibit a fibroblastic appearance and produce a ligamentogenic matrix after 3 weeks. Furthermore, the adenoviral transduction of MSCs and ACL fibroblasts showed no negative effects on proliferation or viability of the cells nor was apoptosis caused. Therefore, the application of these cells represents a possible future therapy for a partial ligament and tendon rupture where the mechanical stability of the remaining ligament or tendon is sufficient and the healing can be improved substantially by this therapy. In general, prospective randomized clinical trials still have to prove the postulated positive effect of MSCs for the treatment of various musculoskeletal diseases, but the results obtained here are already very promising. Ideally, the treatment with MSCs is superior compared to the standard surgical procedures. Because of current safety issues the use of genetically modified cells cannot be expected to be applied clinically in the near future. In summary, the different tissue engineering approaches for novel therapies for musculoskeletal injuries and diseases invested in this thesis showed very promising results and will be further developed and tested in preclinical and clinical trials. N2 - 7.2 Zusammenfassung Kreuzbandrupturen und Defekte im Bereich der Rotatorenmanschette stellen die häufigsten Band- und Sehnenverletzungen im Kniegelenk bzw. in der Schulter dar. Beide Verletzungen haben erhebliche Auswirkungen für den Patienten. Sowohl das Kreuzband als auch die Rotatorenmanschette weisen ein sehr schlechtes Heilungspotential nach einer Verletzung auf. Um weiteren Schäden wie einer Kniegelenksarthrose oder einer Verfettung der Rotatorenmanschette vorzubeugen, ist ein operativer Eingriff erforderlich. In beiden Fällen sind die zurzeit verwendeten Behandlungsstandards nicht optimal, da auch nach einer Therapie viele Patienten über Beschwerden klagen, die von Schmerzen und einer eingeschränkten Mobilität bis hin zu einer kompletten Dysfunktion des betroffenen Gelenks und Muskels reichen. Tissue Engineering ist ein zukunftsträchtiges Feld der Regenerativen Medizin und kann ein möglicher Lösungsansatz sein. Vor allem bei der Behandlung von muskuloskelettalen Verletzungen und Erkrankungen kann es zukünftig eine vorteilhafte Behandlungsalternative darstellen. In dieser Doktorarbeit wurden verschiedene Tissue Engineering-basierte Lösungsansätze untersucht. Zur Rekonstruktion von defektem Band- und Sehnengewebe sind sowohl der Einsatz von mesenchymalen Stammzellen (MSZ) als auch die Gentherapie mit Wachstumsfaktoren besonders geeignet und weisen ein großes therapeutisches Potential auf. Deswegen wurde in der vorliegenden Doktorarbeit als erster innovativer Therapieansatz ein Biomaterial-basiertes Konstrukt für den Ersatz eines gerissenen Kreuzbandes entwickelt und getestet. Der zweite Lösungsansatz stellt eine Zell-basierte Therapie zur Behandlung einer fettigen Atrophie der Rotatorenmanschette dar. Die dritte Methode kombiniert Zellen, Biomaterialien und Wachstumsfaktoren zur Therapie von Kreuzbandrupturen. Biomaterial-basiertes Kreuzbandkonstrukt Das Implantat wird zurzeit in einer präklinischen in vivo Studie am Mini Pig getestet. Diese Proof-of-Principle Studie wird durchgeführt, um die Funktionsfähigkeit der Kollagenfaser-basierten Implantate unter Belastung in vivo zu validieren und ihre Besiedelung mit Fibroblasten, die eine ligamentäre Matrix ausbilden, zu beobachten. Zell-basierte Behandlung der fettig-infiltrieten Rotatorenmanschette Auch bei der Behandlung der fettigen Infiltration der Rotatorenmanschette im Kaninchenmodel, wurden in vivo sehr viel versprechende Ergebnisse erzielt. Die mit autologen MSZ (+MSZ-Gruppe) behandelte Gruppe zeigte nach 6 Wochen einen deutlich geringeren Fettanteil als die unbehandelte Gruppe (-MSZ-Gruppe). Des Weiteren wies der SSP-Muskel aller MSZ-behandelten Tiere sowohl makroskopisch als auch mikroskopisch nur geringe Unterschiede im Vergleich zur gesunden Kontrollgruppe auf. Der genaue zugrunde liegende Mechanismus dieser erfolgreichen Behandlung konnte bisher noch nicht genau geklärt werden und muss in zukünftigen Studien weiter untersucht werden. Zell-, Biomaterial- und Wachstumsfaktor-basierte Behandlung von Kreuzbandrupturen In der aktuellen Literatur beschriebenen Studien zeigen, dass Kollagenhydrogel-konstrukte aufgrund der fehlenden biomechanischen Stabilität nicht geeignet sind für den kompletten Band- bzw. Sehnenersatz. Als vorteilhafte Behandlungsalternative wurde in der vorliegenden Arbeit eine kombinierte Strategie entwickelt und erfolgreich in vitro getestet: Die Kultivierung von BMP-12-, -13- bzw. IGF-1-transduzierten MSZ und Kreuzbandfibroblasten in einem Kollagenhydrogel verlief sehr viel versprechend und ergab, dass die Zellen nach 3 Wochen im Kollagenhydrogel eine fibroblastäre Morphologie aufweisen und eine ligamentäre Matrix ausbilden. Des Weiteren führte die adenovirale Transduktion der Zellen weder zu negativen Auswirkungen auf das Proliferationsverhalten noch auf die Vitalität der Zellen und löste auch keine Apoptose bei den transduzierten Zellen aus. Zukünftig kann der Einsatz dieser Zellen deswegen ein möglicher Ansatz zur Behandlung von Teilrupturen bei Bändern und Sehnen darstellen, bei denen die biomechanische Stabilität ausreichend ist und die Heilung durch die Therapie wesentlich verbessert wird. Im Allgemeinen müssen prospektive randomisierte klinische Studien zeigen, ob sich der positive Effekt der MSZ bei der Behandlung von Erkrankungen des muskuloskelettalen Systems in der Orthopädie und Unfallchirurgie bewährt, wobei die in der vorliegenden Arbeit erzielten Ergebnisse sehr Erfolg versprechend sind. Idealerweise erweist sich die Behandlung mit MSZ als deutlich vorteilhaft gegenüber den bisher etablierten chirurgischen Standardverfahren. Aufgrund der bestehenden Sicherheitsrichtlinien für den Einsatz von gentherapeutischen modifizierten Zellen ist mit deren Verwendung zur Behandlung von Band- und Sehnenerkrankungen in naher Zukunft nicht zu rechnen. Zusammenfassend führte die Untersuchung der unterschiedlichen Tissue Engineering Ansätze, die in dieser Doktorarbeit als neue Therapien zur Behandlung von muskuloskelettalen Verletzungen und Erkrankungen evaluiert wurden, zu sehr viel versprechende Ergebnisse. Diese Therapieansätze sollen weiterentwickelt und in präklinischen und klinischen Studien getestet werden. KW - Kreuzband KW - Sehne KW - Tissue Engineering KW - Mesenchymale Stammzellen KW - Gentherpie KW - Zell-basierte Therapie KW - ACL KW - tendon KW - MSC KW - genetherapy KW - cell-based therapy Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66796 ER - TY - THES A1 - Heymer, Andrea T1 - Chondrogenic differentiation of human mesenchymal stem cells and articular cartilage reconstruction T1 - Chondrogene Differenzierung humaner mesenchymaler Stammzellen und Gelenkknorpelrekonstruktion N2 - Articular cartilage defects are still one of the major challenges in orthopedic and trauma surgery. Today, autologous chondrocyte transplantation (ACT), as a cell-based therapy, is an established procedure. However, one major limitation of this technique is the loss of the chondrogenic phenotype during expansion. Human mesenchymal stem cells (hMSCs) have an extensive proliferation potential and the capacity to differentiate into chondrocytes when maintained under specific conditions. They are therefore considered as candidate cells for tissue engineering approaches of functional cartilage tissue substitutes. First in this study, hMSCs were embedded in a collagen type I hydrogel to evaluate the cartilaginous construct in vitro. HMSC collagen hydrogels cultivated in different culture media showed always a marked contraction, most pronounced in chondrogenic differentiation medium supplemented with TGF-ß1. After stimulation with chondrogenic factors (dexamethasone and TGF-ß1) hMSCs were able to undergo chondrogenesis when embedded in the collagen type I hydrogel, as evaluated by the temporal induction of cartilage-specific gene expression. Furthermore, the cells showed a chondrocyte-like appearance and were homogeneously distributed within a proteoglycan- and collagen type II-rich extracellular matrix, except a small area in the center of the constructs. In this study, chondrogenic differentiation could not be realized with every hMSC preparation. With the improvement of the culture conditions, e.g. the use of a different FBS lot in the gel fabrication process, a higher amount of cartilage-specific matrix deposition could be achieved. Nevertheless, the large variations in the differentiation capacity display the high donor-to-donor variability influencing the development of a cartilaginous construct. Taken together, the results demonstrate that the collagen type I hydrogel is a suitable carrier matrix for hMSC-based cartilage regeneration therapies which present a promising future alternative to ACT. Second, to further improve the quality of tissue-engineered cartilaginous constructs, mechanical stimulation in specific bioreactor systems are often employed. In this study, the effects of mechanical loading on hMSC differentiation have been examined. HMSC collagen hydrogels were cultured in a defined chondrogenic differentiation medium without TGF-ß1 and subjected to a combined mechanical stimulation protocol, consisting of perfusion and cyclic uniaxial compression. Bioreactor cultivation neither affected overall cell viability nor the cell number in collagen hydrogels. Compared with non-loaded controls, mechanical loading promoted the gene expression of COMP and biglycan and induced an up-regulation of matrix metalloproteinase 3. These results circumstantiate that hMSCs are sensitive to mechanical forces, but their differentiation to chondrocytes could not be induced. Further studies are needed to identify the specific metabolic pathways which are altered by mechanical stimulation. Third, for the development of new cell-based therapies for articular cartilage repair, a reliable cell monitoring technique is required to track the cells in vivo non-invasively and repeatedly. This study aimed at analyzing systematically the performance and biological impact of a simple and efficient labeling protocol for hMSCs. Very small superparamagnetic iron oxide particles (VSOPs) were used as magnetic resonance (MR) contrast agent. Iron uptake was confirmed histologically with prussian blue staining and quantified by mass spectrometry. Compared with unlabeled cells, VSOP-labeling did neither influence significantly the viability nor the proliferation potential of hMSCs. Furthermore, iron incorporation did not affect the differentiation capacity of hMSCs. The efficiency of the labeling protocol was assessed with high resolution MR imaging at 11.7 Tesla. VSOP-labeled hMSCs were visualized in a collagen type I hydrogel indicated by distinct hypointense spots in the MR images, resulting from an iron specific loss of signal intensity. This was confirmed by prussian blue staining. In summary, this labeling technique has great potential to visualize hMSCs and track their migration after transplantation for articular cartilage repair with MR imaging. N2 - Gelenkknorpeldefekte stellen immer noch eine der großen Herausforderungen in der Orthopädie und Unfallchirurgie dar. Als zellbasiertes Verfahren ist die Autologe Chondrozytentransplantation (ACT) heute in der klinischen Routine etabliert. Ein großer Nachteil dieser Methode ist jedoch der Verlust des chondrozytären Phänotyps während der Expansion der Zellen. Humane mesenchymale Stammzellen (hMSZ) verfügen über ein ausgeprägtes Proliferationspotential und besitzen die Fähigkeit, unter spezifischen Bedingungen zu Knorpelzellen zu differenzieren. Sie werden daher als alternative Zellen für das Tissue Engineering von funktionellem Knorpelersatzgewebe in Betracht gezogen. In der vorliegenden Arbeit wurden erstens hMSZ in ein Kollagen Typ I Hydrogel eingebracht und zunächst der Grad der chondrogenen Zelldifferenzierung im Konstrukt evaluiert. HMSZ-Kollagenhydrogele zeigten in allen Kultivierungsmedien eine deutliche Kontraktion, welche am stärksten im chondrogenen Differenzierungsmedium unter Zugabe von TGF-ß1 ausgeprägt war. Nach Stimulation mit chondrogenen Faktoren (Dexamethason und TGF-ß1) differenzierten hMSZ zu Knorpelzellen, nachgewiesen durch die Induktion von knorpelspezifischer Genexpression. Die Zellen wiesen eine Chondrozyten-ähnliche Morphologie auf und waren bis auf einen kleinen Bereich in der Mitte des Konstrukts homogen in einer Proteoglykan- und Kollagen Typ II-haltigen extrazellulären Matrix verteilt. Eine chondrogene Differenzierung konnte in der vorliegenden Arbeit jedoch nicht mit jeder hMSZ-Präparation realisiert werden. Durch die Verbesserung der Kulturbedingungen, z.B. durch die Verwendung einer anderen Serumcharge im Gelherstellungsprozess, konnte eine Steigerung der knorpelspezifischen Matrixsynthese erzielt werden. Nichtsdestotrotz spiegeln die großen Schwankungen in der Differenzierungskapazität die hohe Variabilität zwischen verschiedenen Spendern wider, welche die Entwicklung eines knorpelartigen Gewebes beeinflussen. Zusammengefasst zeigen die Ergebnisse, dass das Kollagen Typ I Hydrogel eine geeignete Trägermatrix für hMSZ darstellt, um in Stammzell-basierten Knorpelregenerationstherapien zukünftig als vielversprechende Alternative zur ACT eingesetzt zu werden. Um die Qualität eines in vitro generierten knorpelartigen Gewebes weiter zu verbessern, wird häufig eine mechanische Stimulation in spezifischen Bioreaktorsystemen durchgeführt. In der vorliegenden Arbeit wurden daher zweitens die Effekte von mechanischer Belastung auf die Differenzierung von hMSZ untersucht. HMSZ-Kollagenhydrogele wurden im chondrogenen Differenzierungsmedium ohne TGF-ß1 kultiviert und einem kombinierten mechanischen Stimulationsprotokoll, bestehend aus Perfusion und zyklischer uniaxialer Kompression, ausgesetzt. Die Kultivierung im Bioreaktor hatte weder einen Einfluss auf die Zellvitalität noch auf die Anzahl der Zellen im Kollagen Typ I Hydrogel. Die mechanische Beeinflussung steigerte im Vergleich mit den unbelasteten Kontrollgelen die Genexpression von COMP und Biglykan und führte zu einer Hochregulation von Matrix Metalloproteinase 3. Diese Ergebnisse belegen, dass hMSZ mechanosensitiv sind, jedoch konnte keine Differenzierung zu Knorpelzellen induziert werden. Hierfür sind weitere Studien notwendig, um spezifische Stoffwechselwege zu identifizieren, welche durch die mechanische Stimulation beeinflusst werden. Drittens, für die Entwicklung von neuen zellbasierten Therapien für die Gelenkknorpelrekonstruktion ist eine zuverlässige Bildgebung auf zellulärer Ebene erforderlich, um die Zellen in vivo wiederholt nicht invasiv zu detektieren. Die vorliegende Arbeit hatte zum Ziel, systematisch die Effizienz und die biologischen Auswirkungen einer einfachen und dauerhaften Markierung für hMSZ zu untersuchen. Superparamagnetische Eisenoxidnanopartikel (VSOPs), ein Magnetresonanz (MR)-Kontrastmittel, wurden für die Markierung eingesetzt. Die Aufnahme der Eisenoxidnanopartikel wurde histologisch mittels eisenspezifischer Berliner-Blau-Färbung nachgewiesen und durch Massenspektroskopie quantifiziert. Im Vergleich zu unmarkierten Zellen beeinträchtigte die VSOP-Markierung weder die Vitalität noch das Proliferationspotential der hMSZ. Weiterhin war durch die Aufnahme der Eisenoxidnanopartikel keine Beeinflussung der Differenzierungskapazität der hMSZ zu verzeichnen. Die Effizienz der Zellmarkierung wurde mittels hochauflösender MR-Bildgebung bei 11,7 Tesla beurteilt. VSOP-markierte hMSZ im Kollagen Typ I Hydrogel erschienen als hypointense Punkte in den MR-Bildern, hervorgerufen durch die typische, VSOP-bedingte Signalauslöschung. Histologische Untersuchungen dieser Konstrukte bestätigten die MR-Ergebnisse. Zusammenfassend lässt sich festhalten, dass diese Zellmarkierungsmethode in Verbindung mit der MR-Bildgebung über das Potential verfügt, nach einer Gelenkknorpelrekonstruktion Aufschluss über die Lokalisation und Migration der transplantierten hMSZ zu liefern. KW - Gelenkknorpel KW - Tissue Engineering KW - Chondrogenese KW - Hydrogel KW - Biomechanik KW - NMR-Bildgebung KW - mesenchymale Stammzellen KW - Kollagen-Hydrogel KW - mechanische Stimulation KW - Zellmarkierung KW - superparamagnetische Eisenoxidnanopartikel KW - mesenchymal stem cells KW - collagen hydrogel KW - mechanical stimulation KW - cell labeling KW - superparamagnetic iron oxide particles Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29448 ER -