TY - JOUR A1 - Ansell, Melvyn B. A1 - Kostakis, George E. A1 - Braunschweig, Holger A1 - Navarro, Oscar A1 - Spencer, John T1 - Synthesis of functionalized hydrazines: facile homogeneous (N-heterocyclic carbene)-palladium(0)-catalyzed diboration and silaboration of azobenzenes JF - Advanced Synthesis & Catalysis N2 - The bis(N-heterocyclic carbene)(diphenylacetylene)palladium complex Pd(ITMe)\(_2\)(PhCCPh)] (ITMe=1,3,4,5-tetramethylimidazol-2-ylidene) acts as a highly active pre-catalyst in the diboration and silaboration of azobenzenes to synthesize a series of novel functionalized hydrazines. The reactions proceed using commercially available diboranes and silaboranes under mild reaction conditions. KW - Palladium-catalyzed silaboration KW - B-B bond KW - molecular-structure KW - terminal alkynes KW - crystal-structure KW - alkenes KW - complexes KW - mechanism KW - boron KW - design KW - azobenzenes KW - dilaboration KW - N-heterocyclic carbenes KW - palladium KW - silaboration Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186582 VL - 358 IS - 23 ER - TY - JOUR A1 - Arbuznikov, Alexey V. A1 - Plakhutin, A. B. T1 - Symmetric vector coupling coefficients for atomic non-Roothaan states in the d\(^N\) configuration N2 - No abstract available Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47062 ER - TY - JOUR A1 - Arbuznikov, Alexey V. A1 - Plakhutin, B. N. T1 - Exact expression for the Fock operator in the unified coupling operator method N2 - No abstract available Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47053 ER - TY - JOUR A1 - Arnold, Nicole A1 - Braunschweig, Holger A1 - Damme, Alexander T1 - Bis(μ-diisopropyl-phosphanido-\(κ^2\)P:P)bis-[hydrido(triisopropyl-phosphane-κP)platinum(II)] JF - Acta crystallographica. Section E, Structure reports online N2 - In the centrosymmetric molecular structure of the title compound \([Pt_2(C_6H_{14}P)_2H_2)(C_9H_{21}P)_2]\), each \(Pt^{II}\) atom is bound on one side to a phosphane ligand \((PiPr_3)\) and a hydrido ligand. On the other side, it is bound to two phosphanide ligands \((μ-PiPr_2)\), which engage a bridging position between the two \(Pt^{II}\) atoms, forming a distorted square-planar structure motif. The PtPt distance is 3.6755(2)Å. A comparable molecular structure was observed for bis-(μ-di-tert-butyl-phosphanido)bis-[hydrido(triethyl-phosphane)platinum(II)] [Itazaki et al. (2004 ). Organometallics, 23, 1610-1621]. KW - data-to-parameter ratio = 22.3 KW - mean σ(C–C) = 0.004 Å KW - single-crystal X-ray study KW - T = 100 K KW - R factor = 0.018 KW - wR factor = 0.038 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123723 VL - E68 ER - TY - JOUR A1 - Arnold, Thomas A1 - Braunschweig, Holger A1 - Gruss, Katrin T1 - cyclo-Tri-mu-oxido-tris{[(eta 5,eta 5)-1,2-bis(cyclopentadienyl)-1,1,2,2-tetramethyldisilane]zirconium(IV)}: a trimeric disila-bridged oxidozirconocene JF - Acta Crystallographica Section E: metal-organic compounds N2 - The title compound, [Zr(3)(C(14)H(20)Si(2))(3)O(3)], consists of three disila-bridged zirconocene units, which are connected via an oxide ligand, forming a nearly planar six-membered ring with a maximum displacement of 0.0191 (8) A. The compound was isolated as a by-product from a mixture of [(C(5)H(4)SiMe(2))(2)ZrCl(2)] and Li[AlH(4)] in Et(2)O. KW - Kristallographie Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134802 VL - 67 ER - TY - JOUR A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Celik, Mehmet A1 - Claes, Christina A1 - Ewing, William A1 - Krummenacher, Ivo A1 - Lubitz, Katharina A1 - Schneider, Christoph T1 - Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition JF - Angewandte Chemie, International Edition N2 - Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaro- matic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron–boron multiple bonds under ambient con- ditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6 π-aromatic dibora- benzene compound, a 2  π-aromatic triplet biradical 1,3-dibor- ete, and a phosphine-stabilized 2  π-homoaromatic 1,3-dihydro- 1,3-diborete. DFT calculations suggest that all three com- pounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C\(_6\)H\(_6\) and C\(_4\)H\(_4\)\(^{2+}\), and homoaromatic C\(_4\)H\(_5\)\(^+\). KW - Aromaticity KW - Biradicals KW - Boron KW - Cycloaddition KW - Multiple bonds Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138226 N1 - This is the peer reviewed version of the following article: Angew. Chem. Int. Ed. 2016, 55, 11271–11275, which has been published in final form at 10.1002/anie.201602384. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 55 ER - TY - JOUR A1 - Arrowsmith, Merle A1 - Böhnke, Julian A1 - Braunschweig, Holger A1 - Celik, Mehmet A1 - Dellermann, Theresa A1 - Hammond, Kai T1 - Uncatalyzed Hydrogenation of First-Row Main Group Multiple Bonds JF - Chemistry, A European Journal N2 - Room temperature hydrogenation of an SIDep-stabilized diboryne (SIDep = 1,3-bis(diethylphenyl)-4,5-dihydroimidazol-2-ylidene) and a CAAC-supported diboracumulene (CAAC = 1-(2,6- diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) provided the first selective route to the corresponding 1,2-dihydrodiborenes. DFT calculations showed an overall exothermic (ΔG = 19.4 kcal mol\(^{-1}\) two-step asynchronous H\(_2\) addition mechanism proceeding via a bridging hydride. KW - diborenes KW - carbenes KW - hydrogenation KW - main-group chemistry KW - reaction mechanism KW - Diborane Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139364 N1 - This is the peer reviewed version of the following article: Chemistry, A European Journal, 2016, 22, 17169–17172, which has been published in final form at 10.1002/chem.201604094. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 22 IS - 48 SP - 17169 EP - 17172 ER - TY - JOUR A1 - Arrowsmith, Merle A1 - Endres, Sara A1 - Heinz, Myron A1 - Nestler, Vincent A1 - Holthausen, Max C. A1 - Braunschweig, Holger T1 - Probing the Boundaries between Lewis-Basic and Redox Behavior of a Parent Borylene JF - Chemistry—A European Journal N2 - The parent borylene (CAAC)(Me\(_{3}\)P)BH, 1 (CAAC=cyclic alkyl(amino)carbene), acts both as a Lewis base and one-electron reducing agent towards group 13 trichlorides (ECl\(_{3}\), E=B, Al, Ga, In), yielding the adducts 1-ECl\(_{3}\) and increasing proportions of the radical cation [1]\(^{•+}\) for the heavier group 13 analogues. With boron trihalides (BX\(_{3}\), X=F, Cl, Br, I) 1 undergoes sequential adduct formation and halide abstraction reactions to yield borylboronium cations and shows an increasing tendency towards redox processes for the heavier halides. Calculations confirm that 1 acts as a strong Lewis base towards EX3 and show a marked increase in the B−E bond dissociation energies down both group 13 and the halide group. KW - redox processes KW - bond dissociation energies KW - borylene KW - group 13 KW - Lewis adducts Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257154 VL - 27 IS - 70 ER - TY - JOUR A1 - Auerhammer, Dominic A1 - Arrowsmith, Merle A1 - Braunschweig, Holger A1 - Dewhurst, Rian D. A1 - Jiménez-Halla, J. Oscar C. A1 - Kupfer, Thomas T1 - Nucleophilic addition and substitution at coordinatively saturated boron by facile 1,2-hydrogen shuttling onto a carbene donor JF - Chemical Science N2 - The reaction of [(cAAC\(^{Me}\))BH\(_{3}\)] (cAAC\(^{Me}\) = 1-(2,6-iPr\(_{2}\)C\(_{6}\)H\(_{3}\))-3,3,5,5-tetramethylpyrrolidin-2-ylidene) with a range of organolithium compounds led to the exclusive formation of the corresponding (dihydro)organoborates, Li\(^{+}\)[(cAAC\(^{Me}\)H)BH\(_{2}\)R]− (R = sp\(^{3}\)-, sp\(^{2}\)-, or sp-hybridised organic substituent), by migration of one boron-bound hydrogen atom to the adjacent carbene carbon of the cAAC ligand. A subsequent deprotonation/salt metathesis reaction with Me3SiCl or spontaneous LiH elimination yielded the neutral cAAC-supported mono(organo)boranes, [(cAAC\(^{Me}\)H)BH\(_{2}\)R]− (R]. Similarly the reaction of [cAAC\(^{Me}\))BH\(_{3}\)] with a neutral donor base L resulted in adduct formation by shuttling one boron-bound hydrogen to the cAAC ligand, to generate [(cAAC\(^{Me}\)H)BH\(_{2}\)L], either irreversibly (L = cAAC\(^{Me}\)) or reversibly (L = pyridine). Variable-temperature NMR data and DFT calculations on [(cAAC\(^{Me}\)H)BH\(_{2}\)(cAAC\(^{Me}\))] show that the hydrogen on the former carbene carbon atom exchanges rapidly with the boron-bound hydrides. KW - nucleophilic addition KW - nucleophilic substitution KW - boron-bound hydrogen KW - carbene donor Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170255 VL - 8 IS - 10 ER - TY - JOUR A1 - Bachmann, Jonas A1 - Helbig, Andreas A1 - Crumbach, Merian A1 - Krummenacher, Ivo A1 - Braunschweig, Holger A1 - Helten, Holger T1 - Fusion of Aza‐ and Oxadiborepins with Furans in a Reversible Ring‐Opening Process Furnishes Versatile Building Blocks for Extended π‐Conjugated Materials JF - Chemistry – A European Journal N2 - A modular synthesis of both difurooxa‐ and difuroazadiborepins from a common precursor is demonstrated. Starting from 2,2′‐bifuran, after protection of the positions 5 and 5’ with bulky silyl groups, formation of the novel polycycles proceeds through opening of the furan rings to a dialkyne and subsequent re‐cyclization in the borylation step. The resulting bifuran‐fused diborepins show pronounced stability, highly planar tricyclic structures, and intense blue light emission. Deprotection and transformation into dibrominated building blocks that can be incorporated into π‐extended materials can be performed in one step. Detailed DFT calculations provide information about the aromaticity of the constituent rings of this polycycle. KW - aromaticity KW - boron KW - BN compounds KW - furan KW - polycycles Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293926 VL - 28 IS - 63 ER -