TY - JOUR A1 - Segev, Y. A1 - Rager-Zisman, B. A1 - Isakov, N. A1 - Schneider-Schaulies, Sibylle A1 - ter Meulen, V. A1 - Udem, S. A. A1 - Segal, S. A1 - Wolfson, M. T1 - Reversal of measles virus mediated increase of phosphorylating activity in persistently infected mouse neuroblastoma cells by anti measles antibodies N2 - No abstract available KW - Virologie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62362 ER - TY - JOUR A1 - Schubert-Unkmeir, Alexandra A1 - Schneider-Schaulies, Sibylle A1 - Gulbins, Erich A1 - Hebling, Sabrina A1 - Simonis, Alexander T1 - Differential Activation of Acid Sphingomyelinase and Ceramide Release Determines Invasiveness of Neisseria meningitidis into Brain Endothelial Cells N2 - The interaction with brain endothelial cells is central to the pathogenicity of Neisseria meningitidis infections. Here, we show that N. meningitidis causes transient activation of acid sphingomyelinase (ASM) followed by ceramide release in brain endothelial cells. In response to N. meningitidis infection, ASM and ceramide are displayed at the outer leaflet of the cell membrane and condense into large membrane platforms which also concentrate the ErbB2 receptor. The outer membrane protein Opc and phosphatidylcholine-specific phospholipase C that is activated upon binding of the pathogen to heparan sulfate proteoglycans, are required for N. meningitidis-mediated ASM activation. Pharmacologic or genetic ablation of ASM abrogated meningococcal internalization without affecting bacterial adherence. In accordance, the restricted invasiveness of a defined set of pathogenic isolates of the ST-11/ST-8 clonal complex into brain endothelial cells directly correlated with their restricted ability to induce ASM and ceramide release. In conclusion, ASM activation and ceramide release are essential for internalization of Opc-expressing meningococci into brain endothelial cells, and this segregates with invasiveness of N. meningitidis strains. Author Summary Neisseria meningitidis, an obligate human pathogen, is a causative agent of septicemia and meningitis worldwide. Meningococcal infection manifests in a variety of forms, including meningitis, meningococcemia with meningitis or meningococcemia without obvious meningitis. The interaction of N. meningitidis with human cells lining the blood vessels of the blood-cerebrospinal fluid barrier is a prerequisite for the development of meningitis. As a major pathogenicity factor, the meningococcal outer membrane protein Opc enhances bacterial entry into brain endothelial cells, however, mechanisms underlying trapping of receptors and signaling molecules following this interaction remained elusive. We now show that Opc-expressing meningococci activate acid sphingomyelinase (ASM) in brain endothelial cells, which hydrolyses sphingomyelin to cause ceramide release and formation of extended ceramide-enriched membrane platforms wherein ErbB2, an important receptor involved in bacterial uptake, clusters. Mechanistically, ASM activation relied on binding of N. meningitidis to its attachment receptor, HSPG, followed by activation of PC-PLC. Meningococcal isolates of the ST-11 clonal complex, which are reported to be more likely to cause severe sepsis, but rarely meningitis, barely invaded brain endothelial cells and revealed a highly restricted ability to induce ASM and ceramide release. Thus, our results unravel a differential activation of the ASM/ceramide system by the species N. meningitidis determining its invasiveness into brain endothelial cells. KW - small interfering RNAs KW - Neisseria meningitidis KW - bacterial pathogens KW - endothelial cells KW - meningococcal disease KW - flow cytometry KW - cell staining KW - Escherichia coli infections Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113031 ER - TY - JOUR A1 - Schnorr, J. J. A1 - Schneider-Schaulies, Sibylle A1 - Simon-Jödicke, A. A1 - Pavlovic, J. A1 - Horisberger, M. A. A1 - ter Meulen, V. T1 - MxA dependent inhibition of Measles Virus glycoprotein synthesis in a stably transfected human monocytic cell line N2 - No abstract available KW - Virologie Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62353 ER - TY - JOUR A1 - Schneider-Schaulies, Sibylle A1 - Schumacher, Fabian A1 - Wigger, Dominik A1 - Schöl, Marie A1 - Waghmare, Trushnal A1 - Schlegel, Jan A1 - Seibel, Jürgen A1 - Kleuser, Burkhard T1 - Sphingolipids: effectors and Achilles heals in viral infections? JF - Cells N2 - As viruses are obligatory intracellular parasites, any step during their life cycle strictly depends on successful interaction with their particular host cells. In particular, their interaction with cellular membranes is of crucial importance for most steps in the viral replication cycle. Such interactions are initiated by uptake of viral particles and subsequent trafficking to intracellular compartments to access their replication compartments which provide a spatially confined environment concentrating viral and cellular components, and subsequently, employ cellular membranes for assembly and exit of viral progeny. The ability of viruses to actively modulate lipid composition such as sphingolipids (SLs) is essential for successful completion of the viral life cycle. In addition to their structural and biophysical properties of cellular membranes, some sphingolipid (SL) species are bioactive and as such, take part in cellular signaling processes involved in regulating viral replication. It is especially due to the progress made in tools to study accumulation and dynamics of SLs, which visualize their compartmentalization and identify interaction partners at a cellular level, as well as the availability of genetic knockout systems, that the role of particular SL species in the viral replication process can be analyzed and, most importantly, be explored as targets for therapeutic intervention. KW - glycosphingolipids KW - ceramides KW - sphingosine 1-phosphate KW - sphingomyelinase KW - HIV KW - SARS-CoV-2 KW - measles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245151 SN - 2073-4409 VL - 10 IS - 9 ER - TY - JOUR A1 - Schneider-Schaulies, Sibylle A1 - Schnorr, J.-J. A1 - Dunster, L. M. A1 - Schneider-Schaulies, Jürgen A1 - ter Meulen, Volker T1 - The role of host factors in measles virus persistence N2 - As critical steps in the life cycle oJ measles virus (Mfl), the e.fficiency of uptake into and replication in susceptible host cells are governed by cellular determinants. Measles virus infections of cells of the human CNS are characterized by particular constraints imposed on v1:ral transcription and translation attenuating viral gene Junctions and thus contributing to the pathogenesis oJ MV persistence in these cells. KW - Immunologie KW - CNS infection KW - MV receptor KW - MV transcription KW - unwindase Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-54944 ER - TY - JOUR A1 - Schneider-Schaulies, Sibylle A1 - Schneider-Schaulies, Jürgen A1 - Schuster, A. A1 - Bayer, M. A1 - Pavlovic, J. A1 - ter Meulen, V. T1 - Cell type specific MxA-mediated inhibition of measles virus transcription in human brain cells N2 - No abstract available KW - Virologie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62255 ER - TY - JOUR A1 - Schneider-Schaulies, Sibylle A1 - Schneider-Schaulies, Jürgen A1 - Bayer, M. A1 - Löffler, S. A1 - ter Meulen, V. T1 - Spontaneous and differentiation dependent regulation of measles virus gene expression in human glial cells N2 - The expression of measles virus (MV) in six different permanent human glioma cell lines (D-54, U-251, U-138, U-105, U-373, and D-32) was analyzed. Although all celllines were permissive for productive replication of all MV strains tested, U-251, D-54, and D-32 cells spontaneously revealed restrictions of MV transcription similar to those observed for primary rat astroglial cells and brain tissue. In vitro differentiation of D-54 and U-251 cells by substances affecting tbe intracellular cyclic AMP Ievel caused a significant reduction of tbe expression of tbe viral proteins after 18, 72, and 144 b of infection. This pronounced restriction was not paralleled to a comparable Ievel by an inhibition of tbe syntbesis and biological activity in vitro of virus·specific mRNAs as sbown by quantitative Northem (RNA) blot analyses and in vitro translation. The block in viral protein syntbesis could not be attributed to tbe induction of type I interferon by any of tbe substances tested. Our findings indicate tbat down-regulation of MV gene expression in human brain cells can occur by a cell type-rlependent regulation of tbe viral mRNA transcription and a differentiation-dependent regulation of translation, botb of wbicb may be crucial for the establisbment of persistent MV infections in tbe centrat nervous system. KW - Immunologie Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-54913 ER - TY - JOUR A1 - Schneider-Schaulies, Sibylle A1 - Mueller, Nora A1 - Avota, Elita A1 - Collenburg, Lena A1 - Grassmé, Heike T1 - Neutral Sphingomyelinase in Physiological and Measles Virus Induced T Cell Suppression N2 - T cell paralysis is a main feature of measles virus (MV) induced immunosuppression. MV contact mediated activation of sphingomyelinases was found to contribute to MV interference with T cell actin reorganization. The role of these enzymes in MV-induced inhibition of T cell activation remained equally undefined as their general role in regulating immune synapse (IS) activity which relies on spatiotemporal membrane patterning. Our study for the first time reveals that transient activation of the neutral sphingomyelinase 2 (NSM2) occurs in physiological co-stimulation of primary T cells where ceramide accumulation is confined to the lamellum (where also NSM2 can be detected) and excluded from IS areas of high actin turnover. Genetic ablation of the enzyme is associated with T cell hyper-responsiveness as revealed by actin dynamics, tyrosine phosphorylation, Ca2+-mobilization and expansion indicating that NSM2 acts to suppress overshooting T cell responses. In line with its suppressive activity, exaggerated, prolonged NSM2 activation as occurring in co-stimulated T cells following MV exposure was associated with aberrant compartmentalization of ceramides, loss of spreading responses, interference with accumulation of tyrosine phosphorylated protein species and expansion. Altogether, this study for the first time reveals a role of NSM2 in physiological T cell stimulation which is dampening and can be abused by a virus, which promotes enhanced and prolonged NSM2 activation to cause pathological T cell suppression. KW - T cells KW - cell membrane KW - actins KW - enzymes KW - T cell receptors KW - flow cytometry KW - genetic interference KW - tyrosine Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111038 ER - TY - JOUR A1 - Schneider-Schaulies, Sibylle A1 - Liebert, UG A1 - Baczko, K. A1 - ter Meulen, V. T1 - Molecular Biological Aspects of Virus-Induced Subacute Encephalomyelitis in Lewis Rats N2 - no abstract available KW - Biologie Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-81776 ER - TY - JOUR A1 - Schneider-Schaulies, Sibylle A1 - Liebert, UG A1 - Baczko, K, A1 - ter Meulen, V. T1 - Molecular Biological Analysis of Measles Virus Gene Expression in the CNS of Acutely and Persistently Infected Rat Brain Cells KW - Virologie Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-81784 ER -