TY - THES A1 - Sturm, Christian T1 - Theoretical Investigation of the Geometrical Arrangements of alpha-alanyl-peptide Nucleic Acid Hexamer Dimers and the Underlying Interstrand Binding Motifs T1 - Theoretische Untersuchungen der geometrischen Anordnung der alpha-Alanyl-Peptid-Nukleinsäure-Hexamer-Dimere und deren Interstrang-Bindungsmotive N2 - Die Funktionalitäten der DNA oder RNA werden hauptsächlich durch die verschiedenen Wechselwirkungen der paarenden Nucleinbasen bestimmt. Um die komplexen Zusammenhänge dieser verschiedenen Wechselwirkungen zu verstehen, werden Modellsysteme benötigt, die weniger Restriktionen durch das Rückgrat besitzen. Ein Beispiel für solche Systeme sind Peptidnucleinsäuren (PNA), in denen das Zuckerphosphatrückgrat der DNA oder RNA durch ein Peptidrückgrat ersetzt wird. Diederichsen et al. gelang es, eine große Anzahl solcher Systeme mit einen alpha-Alanyl-Rückgrat zu synthetisieren, an das kanonische und nicht-kanonische Nucleinsäuren gebunden sind. Diese Systeme aggregieren in verschiedenen Bindungsmotiven, die nicht in der DNA oder RNA auftauchen. Diese ungewöhnlichen Paarungsmotive könnten einen tiefen Einblick in das Zusammenspiel der Wechselwirkungen der Nucleinbasen geben, aber die geringen Löslichkeit der alpha-Alanyl-PNA Oligomere verhinderte eine experimentelle Charakterisierung der geometrischen Anordnung durch Röntgenstruktur- oder NMR-Experimente. Lediglich die absolute Stabilität der verschiedenen Aggregate konnte durch Messungen der Schmelztemperatur mit Hilfe der UV-Spektroskopie bestimmt werden. Da die Kenntnis der geometrischen Strukturen sowie der ausgebildeten Bindungsmotive wichtig ist, um einen Einblick in das Zusammenspiel der einzelnen Wechselwirkungen zu erlangen, besteht das Ziel der vorliegenden Arbeit darin, solche Informationen mit der Hilfe von theoretischen Methoden zu erlangen. Zusätzlich sind Effekte von Interesse, aus denen sich Trends bezüglich der Stabilität bestimmen lassen. Solche Untersuchungen sind einfacher zu realisieren als die Berechnung der absoluten Stabilitäten, da viele Beiträge zur absoluten Energie für ähnliche Systeme (entropische und dynamische Effekte) in etwa gleich groß sind. Somit sind diese entropischen und dynamischen Effekte für das Ziel dieser Arbeit weniger wichtig. Zur Untersuchung der Bindungseigenschaften und der Stabilitäten von alpha-Alanyl-PNA Oligomeren war es notwendig, bis dato nicht parametrisierte Nucleinbasen in den Parametersatz des Amber4.1 Kraftfelds zu integrieren. Die fehlenden Ladungen wurden durch Berechungen mit dem R.E.D-Programm-Paket ermittelt. Das Programm bestimmt aus dem elektrostatischen Potential einer optimierten Struktur die atomzentrierten Ladungen. Die fehlenden Bindungsparameter wurden der Literatur entnommen. Die Untersuchungen der einzelnen Dimere begannen jeweils mit der Konstruktion der alpha-Alanyl-PNAs für alle möglichen Paarungsmodi. Es konnte gezeigt werden, dass bestimmte Paarungsmodi aufgrund der geometrischen Gegebenheiten der Dimere und des Rückgrats nicht realisierbar waren. Für andere Dimere war ein Aufbau der alpha-Alanyl-PNA-Dimere zwar möglich, jedoch zerfielen die Dimere wieder während einer ersten Geometrieoptimierung aufgrund der hohen Spannung im Rückgrat. Die stabilen Systeme wurden zunächst in verschiedenen Molekulardynamik-(MD)-Läufen simuliert. Informationen über die Geometrie bei T=0 K wurden durch Geometrieoptimierungen erhalten, die an verschieden Punkten der MD Läufe gestartet wurden. Die resultierenden Geometrien aus den verschiedenen Anfangspunkten waren identisch. Für die geometrieoptimierten Strukturen wurden für das T=0 K Modell die Wechselwirkungsenergien zwischen den Nucleinbasen und der Einfluss der Rückgrats auf die Stabilität der Dimer in zwei separaten Schritten bestimmt. Im ersten Schritt wurde das Rückgrat entfernt und die Schnittstellen mit Methylgruppen abgesättigt. Die Wechselwirkungsenergie zwischen den Nucleinbasen wurde durch die Differenz der Energien des gesamten Systems und der Summe der Energien der einzelnen Nucleinbasen in der Geometrie des Dimers bestimmt. Aufgrund der durchgeführten Untersuchungen und die sich daraus ergebenen Korrelation der berechneten Stabilisierungsenergien mit der Schmelztemperatur konnte gezeigt werden, dass mit der vorgeschlagenen Methode eine verlässliche Beschreibung der PNA Systeme möglich ist. Für eine weitere Verbesserung des vorgestellten Modells bedarf es zusätzliche Röntgenstruktur- oder NMR-Experimente, die zur Strukturaufklärung der alpha-Alanyl-PNA Dimere entscheidend beitragen. Weitere detaillierte Daten über die Enthalpiebeiträge zur absoluten Energie der verschiedenen Komplexe wären sehr hilfreich, um die vorgestellte Methode zu bestätigen und zu verbessern. Diese Informationen könnten zum einen durch die Auswertung der Form der Schmelzkurve sowie durch Mikrokalorimetrie erhalten werden. Für den Fall, dass die Vorhersagen durch die experimentellen Befunde bestätigt würden, könnte der Ansatz auf verwandte Systeme wie zum Beispiel beta-Alanyl-PNA, DNA oder RNA angewandt werden. Durch diese weiteren Informationen könnte unser Ansatz zusätzlich durch die Berücksichtigung von dynamischen und/oder entropischen Effekte erweitert werden. N2 - The functionalities of DNA and RNA are mainly determined by the various interactions between the pairing nucleobases. To understand the complex interplay of the various interactions model systems are needed in which the interstrand pairing is less restricted by the backbone. Such systems are peptide nucleo acids (PNA) in which the sugar phosphate backbone of DNA or RNA is replaced by a peptide backbone. Diederichsen et al. were able to synthesize a large number of systems with an alpha-alanyl backbone to which canonical and non-canonical nucleobases were attached (alpha-alanyl-PNA). These systems formed aggregates with various binding motifs which do not appear in DNA or RNA. Especially the unusual binding motifs would allow a deep insight into the complex interplay of the interactions between nucleobases but the small solubility of alpha-alanyl PNA oligomers hampers the experimental determination of the geometrical arrangement by X-Ray or NMR. Only the overall stability of the various aggregates could be determined by measurements of melting temperatures via UV spectroscopy. Since a detailed knowledge about the geometrical structure and bonding motifs are necessary to obtain insight into the interplay of the various interactions it is the goal of the present work to achieve such information with the help of theoretical approaches. Additionally we are interested in the effects which govern the trends in the stabilities of the systems. This task should be simpler than an investigation of the absolute stabilities since many contributions (e.g. entropic and dynamic effects) can be expected to be similar for similar systems. Consequently, such effects are less important for our goal. For the investigation of all experimentally tested alpha-alanyl-PNA oligomers it was essential to parameterize the noncanonical nucleobases since they were not implemented in the standard version of the Amber4.1 force field. This was achieved by adding the missing parameters to the Amber Force Field. The charges of each nucleobase were determined by the R.E.D program package. The investigation started with the construction of all possible pairing modes for alpha-alanyl-PNA dimer. It could be observed that certain pairing modes were not realizable due to the geometrical arrangement of the dimer and the restriction of the backbone. For other pairing modes a construction was possible, but due to the geometrical restrictions of the backbone the strain in the system is so high that they fall apart during a first geometry optimization. Stable systems were then simulated by various molecular dynamics (MD)-runs. Information about their geometrical arrangements for T=0 K were obtained from geometry optimizations which were started from various points of the MD-run. The resulting geometries were found to be virtually identical. Information about the interactions within a dimer at T=0 K were obtained from a two step procedure in which the effects connected with the nucleobases and the influence of the backbone are determined separately. It was performed for the optimized geometries. In a first step the backbone was removed and the resulting dangling bonds were saturated by methyl groups. The total interaction energy between the nucleobases can now be estimated by the difference between the energy of the complete system and the sum of the energies of the single nucleobases computed at the geometries they take in the whole system. According to the carried out investigation and the resulting correlation of the melting temperature with the calculated stabilization energies the presented method seems to represent a reliable tool for the description of the PNA systems. Despite this success additional experimental verifications of our method are necessary to ensure its applicability. Such verifications could be based on geometrical information obtained via X-Ray or NMR investigations. More detailed data about entropic an enthalpic contribution to the stability of the various complexes would also be very helpful to verify and improve our approach. Such information could be either obtained from a careful analysis of shape of the melting temperature curve or from microcalorimetric investigations. If such tests confirm our predictions the approach could be extended and applied to neighboring fields as for examples beta-alanyl-PNA, DNA or RNA systems with unusual nucleobases. Such information is also necessary to extend our approach in a way that dynamic and/or entropic effects are also taken into account. KW - Peptid-Nucleinsäuren KW - Räumliche Anordnung KW - Wasserstoffbrückenbindung KW - PNA KW - Wasserstoffbrückenbindung KW - Stacking KW - Nukleinsäure KW - Kraftfeld KW - PNA KW - Hydrogen bond KW - Stacking KW - nucleic acid KW - force field Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20363 ER - TY - THES A1 - Chen, Zhijian T1 - pi-Stacks Based on Self-Assembled Perylene Bisimides : Structural, Optical, and Electronic Properties T1 - pi-Stapel von selbstaggregierten Perylenbisimiden : Strukturelle, Optische und Electronische Eigenschaften N2 - As a traditional industrial pigment, perylene bisimide (PBI) dyes have found wide-spread applications. In addition, PBI dyes have been considered as versatile and promising functional materials for organic-based electronic and optic devices, such as transistors and solar cells. For these novel demands, the control of self-organization of this type of dye and the investigation of the relationship between the supramolecular structure and the relevant optical and electronic properties is of great importance. The objective of this thesis focuses on gaining a better understanding of structural and functional properties of pi-stacks based on self-assembling PBIs. Studies include the synthesis and characterization of new functional PBI dyes, their aggregation in solution, in liquid crystalline state and on surfaces, and their fluorescence and charge transport properties. An overview of the formation, thermodynamics and structures of pi-stacks of functional pi- conjugated molecules in solution and in liquid crystalline phases is given in Chapter 2. Chapters 3 and 4 deal with the pi-pi aggregates of new, highly fluorescent PBIs without core-substituents. In Chapter 3, the self-assembly of a PBI with tridodecylphenyl substituents at imide N atoms both in solution and condensed phase has been studied in great detail. In condensed state, the dye exhibits a hexagonal columnar liquid crystalline (LC) phase as confirmed by DSC, OPM and X-ray diffraction analysis. The columnar stacking of this dye has been further confirmed by atomic force microscopy (AFM) where single columns could be well resolved The charge transport properties this dye have been investigated by pulse radiolysis-time resolved microwave conductivity (PR-TRMC) measurements. To shed more light on the nature of the pi-pi interaction of the unsubstituted PBIs, solvent depend aggregation properties have been investigated in Chapter 4. The studies are further extended from core-unsubstituted PBIs to core-substituted ones (Chapter 5 and 6). In Chapter 5, a series of highly soluble and fluorescent core-twisted PBIs that bear the same trialkylphenyl groups at the imide positions but different bay-substituents and were synthesized. These compounds are characterized by distortions of the perylene planes with dihedral angles in the range of 15-37° according to crystallographic data and molecular modeling studies. In contrast to the extended oligomeric aggregates formed for planar unsubstituted PBIs, this family of dyes formed discrete pi-pi-stacked dimers in apolar methylcyclohexane as concentration-dependent UV/Vis measurements and VPO analysis revealed. The Gibbs free energy of dimerization can be correlated with the twist angles of the dyes linearly. In condensed state, several of these PBIs form luminescent rectangular or hexagonal columnar liquid crystalline phases with low isotropization temperatures. The core-twisting effect on semiconducting properties has been examined in Chapter 6. In this chapter, a comparative study of the electrochemical and the charge transport properties of a series of non-substituted and chlorine-functionalized PBIs was performed. While Chapters 3-6 focus on one-component dye systems, Chapter 7 explored the possibility of a supramolecular engineering of co-aggregates formed by hydrogen-bonded 2:1 and 1:1 complex of oligo(p-phenylene vinylene)s (OPVs) and PBIs. Covalently linked donor-acceptor dye arrays have been prepared for comparison. Concentration and temperature-dependent UV/Vis spectroscopy revealed all hydrogen-bonded and covalent systems form well-ordered J-type aggregates in methylcyclohexane. With these hydrogen-bonded OPV-PBI complexes, fibers containing p-type and n-type molecules can be prepared on the nano-scale (1-20 nm). For the 2:1 OPV-PBI hydrogenbonded arrays hierarchically assembled chiral superstructures consisting of left-handed helical pi-pi co-aggregates (CD spectroscopy) of the two dyes that further assemble into right-handed nanometer-scale supercoils in the solid state (AFM study) have been observed. All of these well-defined OPV-PBI assemblies presented here exhibit photoinduced electron transfer on sub-ps timescale, while the electron recombination differs for different systems.Thus, it was suggested that such assemblies of p- and n-type semiconductors might serve as valuable nanoscopic functional units for organic electronics. N2 - Als traditionsreiches in industriellem Maßstab produziertes Pigment finden Perylenbisimid (PBI)-Farbstoffe Verwendung in vielen verschiedenen Anwendungsgebieten. Außerdem sind diese Farbstoffe aufgrund ihrer vielseitigen funktionellen Eigenschaften aussichtsreiche Kandidaten für auf organischen Materialen basierende elektronische und optische Einheiten, wie z.B. Transistoren oder Solarzellen. Für diese neuen Herausforderungen ist die gezielte Kontrolle bzw. Steuerung der Selbstorganisation dieser Farbstofftypen sowie die Erforschung des Zusammenhangs zwischen der supramolekularen Struktur und den optischen und elektronischen Eigenschaften von großem Interesse. Ziel dieser Arbeit war es daher, ein besseres Verständnis für strukturelle und funktionelle Eigenschaften pi-gestapelter Chromophore am Beispiel selbst-aggregierender PBI-Farbstoffe zu entwickeln. Dies umfaßt die Synthese und die Charakterisierung neuer funktioneller PBI-Farbstoffe, die Untersuchung ihrer Aggregate in Lösung, in flüssigkristallinen Phasen, Dünnschichten auf verschiedenen Oberflächen, sowie der Fluoreszenz- und Ladungsträgertransporteigenschaften. Ein Überblick über den Selbstaggregationsprozess, die thermodynamischen Eigenschaften und die Strukturen von pi-Stapeln verschiedener funktioneller pi-konjugierter Moleküle in Lösung und in flüssigkristallinen Phasen wird in Kapitel 2 gegeben. Kapitel 3 und 4 beschäftigen sich mit den pi-pi-Aggregaten neuartiger, stark fluoreszierender PBIs ohne Kernsubstituenten. In Kapitel 3 wurde das Aggregationsverhalten eines PBIs mit Tridodecylphenyl-Substituenten an den Imid-N-Atomen sowohl in Lösung als auch in der kondensierten Phase sehr detailiert untersucht. In der kondensierten Phase wurde eine kolumnar-hexagonale flüssigkristalline (LC) Phase mittels Differenzialkalorimetrie (DSC), optischer Polarisationsmikroskopie und Pulverröntgendiffraktometrie nachgewiesen. Die eindimensionale Stapelanordnung wurde zudem mittels Rasterkraftmikroskopie (AFM) bestätigt, welche ausgedehnte kolumnare Strukturen ergaben. Die Ladungstransporteigenschaften dieses Farbstoffes wurden mittels „pulse radiolysis-time resolved microwave“ (PR-TRMC) Experimenten untersucht. Zur weiteren Aufklärung der Natur der pi-pi-Interaktion des unsubstituierten PBI wurden in Kapitel 4 die lösungsmittelabhängigen Eigenschaften untersucht. Die Studien wurden zudem ausgedehnt von kernunsubstituierten auf kernsubstituierte PBIFarbstoffe. In Kapitel 5 werden die Synthesen einer Reihe sehr gut löslicher, fluoreszierender, nichtplanarer PBI-Farbstoffe vorgestellt, welche dieselben Trialkylphenylimidisubstituenten, jedoch unterschiedliche Bay-Substituenten tragen. Für diese Substanzen wurden mittels kristallographischer Daten sowie quantenchemischer Berechnungen Diederwinkelwinkel im Bereich 15 bis 37° ermittelt. Im Gegensatz zu den ausgedehnten oligomeren Aggregaten des planaren PBI bildet diese Farbstoffklasse aufgrund der Verdrillung des aromatischen Kerns in apolaren Lösungsmitteln wie Methylcyclohexan diskrete pi-pi-gestapelte Dimere. Die Freie Enthalpie für die Dimerisierung korreliert dabei linear mit dem Verdrillungswinkel. In der kondensierten Phase bilden einige dieser PBI-Farbstoffe fluoreszierende, rektangulare bzw. hexagonale kolumnare LC Phasen mit niedrigen Klärtemperaturen. In Kapitel 6 wurden die Auswirkungen des Verdrillungswinkels auf die Halbleitereigenschaften untersucht. Es wurden vergleichende Studien der elektrochemischen Eigenschaften sowie der Ladungsträgertransporteigenschaften einer Serie unsubstituierter und chlorfunktionalisierter PBI-Farbstoffe durchgeführt. Während in Kapitel 3-6 der Fokus auf Einkomponenten-Farbstoffaggregaten lag, wurde in Kapitel 7 die Möglichkeiten einer supramolekularer Anordnung von Co-Aggregaten untersucht, welche durch wasserstoffbrückengebundene 2:1 und 1:1 Komplexe zwischen Oligo(p-phenylenevinylenen) (OPVs) und PBIs aufgebaut sind. Mit diesen wasserstoffbrückengebundenen OPV-PBI Komplexen lassen sich eindimensionale Aggregate auf der Nanoskala erzeugen, welche aus p- und n-halbleitenden Molekülen bestehen. Für die wasserstoffbrückengebundenen 2:1 OPV-PBI Komplexe wurden Anordnungen beobachtet, welche chirale Überstrukturen mit links-drehenden, helicalen pi-pi- Co-Aggregaten (CD-Spectroscopie) aufweisen, die sich wiederum in rechts-drehenden Superhelices bündeln (AFM-Studien). Während für alle OPV-PBI Aggregate photoinduzierte Elektronentransferprozesse im subps Zeitskalenbereich beobachtet wurden, unterschieden sich die Rekombinationsraten je nach System beträchtlich. Somit ist diese Art von organisierten nanoskopischen p- und n-halbleitenden funktionellen. Bausteinen aussichtsreich für verschiedene Anwendungen in der Organischen Elektronik. KW - Perylenderivate KW - Farbstoff KW - Flüssigkristall KW - Selbstorganisation KW - Perylenbisimiden KW - selbstaggregierten KW - Flüssigkristall KW - Farbstoff KW - perylene bisimide KW - self-assembly KW - liquid crystal KW - functional dyes Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19940 ER -