TY - THES A1 - Wetzel, Andrea T1 - The role of TrkB and NaV1.9 in activity-dependent axon growth in motoneurons T1 - Die Rolle von TrkB und NaV1.9 in aktivitätsabhängigem Axonwachstum von Motoneuronen N2 - Während der Entwicklung des Nervensystems lassen sich bei Motoneuronen aktivitätsabhängige Kalziumströme eobachten, die das Axonwachstum regulieren. Diese Form der neuronalen Spontanaktivität sowie das Auswachsen von Axonen sind bei Motoneuronen, die aus Tiermodellen der Spinalen Muskelatrophie isoliert werden, gestört. Experimente aus unserer Arbeitsgruppe haben gezeigt, dass spontane Erregbarkeit und aktivitätsabhängiges Axonwachstum von kultivierten Motoneuronen auch unter Verwendung von Toxinen beeinträchtigt sind, welche die Aktivität von spannungsabhängigen Natriumkanälen blockieren. In diesen Versuchen war die Wirkung von Saxitoxin effizienter als die Wirkung von Tetrodotoxin. Wir identifizierten den Saxitoxin-sensitiven/Tetrodotoxin-insensitiven spannungsabhängigen Natriumkanal NaV1.9 als Trigger für das Öffnen spannungsabhängiger Kalziumkanäle. Die Expression von NaV1.9 in Motoneuronen konnte über quantitative RT-PCR nachgewiesen werden und antikörperfärbungen offenbarten eine Anreicherung des Kanals im axonalen Wachstumskegel sowie an Ranvier'schen Schnürringen von isolierten Nervenfasern wildtypischer Mäuse. Motoneurone von NaV1.9 knock-out Mäusen zeigen reduzierte Spontanaktivität und eine Reduktion des Axonwachstums, welche durch NaV1.9 Überexpression normalisiert werden kann. In Motoneuronen von Smn-defizienten Mäusen konnte keine Abweichung der NaV1.9 Proteinverteilung nachgewiesen werden. Kürzlich wurden Patienten identifiziert, die eine missense-Mutation im NaV1.9 kodierenden SCN11A Gen tragen. Diese Patienten können keinerlei Schmerz empfinden und leiden zudem an Muskelschwäche in Kombination mit einer verzögerten motorischen Entwicklung. Im Rahmen dieser Doktorarbeit konnten molekularbiologische Untersuchungen an Mäusen, welche die Mutation im orthologen Scn11a Gen tragen, zur Aufklärung des Krankheitsmechanismus beitragen. Die Kooperationsstudie zeigte, dass eine gesteigerte Funktion von NaV1.9 diese spezifische Kanalerkrankung auslöst, was die Wichtigkeit von NaV1.9 in menschlichen Motoneuronen unterstreicht. Eine frühere Studie beschrieb an hippocampalen Neuronen, dass die Rezeptortyrosinkinase tropomyosin receptor kinase B (TrkB) den NaV1.9 Kanal öffnen kann. Im Wachstumskegel von Motoneuronen ist TrkB nachweisbar und folglich in räumlicher Nähe zu NaV1.9 zu finden. Um zu prüfen, ob TrkB in die spontane Erregbarkeit von Motoneuronen involviert ist, wurden TrkB knock-out Mäuse untersucht. Isolierte Motoneurone von TrkB knock-out Mäusen weisen eine Reduktion der Spontanaktivität und eine Verringerung des Axonwachstums auf. Ob TrkB und NaV1.9 hierbei funktionell gekoppelt sind, ist Gegenstand künftiger Forschung. N2 - During development of the nervous system, spontaneous Ca2+ transients are observed that regulate the axon growth of motoneurons. This form of spontaneous neuronal activity is reduced in motoneurons from a mouse model of spinal muscular atrophy and this defect correlates with reduced axon elongation. Experiments from our group demonstrated that voltage-gated sodium channel pore blockers decrease spontaneous neuronal activity and axon growth in cultured motoneurons, too. In these experiments, saxitoxin was more potent than tetrodotoxin. We identified the saxitoxin-sensitive/tetrodotoxin-insensitive voltage-gated sodium channel NaV1.9 as trigger for the opening of voltage-gated calcium channels. In motoneurons, expression of NaV1.9 was verified via quantitative RT-PCR. Immuno labelling experiments revealed enrichment of the channel in axonal growth cones and at the nodes of Ranvier of isolated nerve fibres from wild type mice. Motoneurons from NaV1.9 knock-out mice show decreased spontaneous activity and reduced axonal elongation. This growth defect can be rescued by NaV1.9 overexpression. In motoneurons from Smn-deficient mice, NaV1.9 distribution appeared to be normal. Recently, patients carrying a missense mutation in the NaV1.9-encoding gene SCN11A were identified. These patients are not able to feel pain and suffer from muscular weakness and a delayed motor development. Molecular biological work during this dissertation supported the analysis of this mutation in a mouse model carrying the orthologous alteration in the Scn11a locus. The cooperation study confirmed that a gain-of-function mechanism underlies the NaV1.9-mediated channelopathy, thus suggesting a functional role of NaV1.9 in human motoneurons. An earlier study showed in hippocampal neurons that the receptor tyrosine kinase tropomyosin receptor kinase B (TrkB) can open the NaV1.9 channel. TrkB is localized in growth cones of motoneurons and subsequently found in close proximity to NaV1.9. In order to proof whether TrkB is involved in spontaneous excitability in motoneurons, TrkB knock-out mice were analysed. Isolated motoneurons from TrkB knock-out mice show a reduced spontaneous activity and axon elongation. It remains to be studied whether TrkB and NaV1.9 are functionally connected. KW - Motoneuron KW - Neurotrophic factors KW - NaV1.9 KW - motoneuron KW - spontaneous neuronal activity KW - Axon KW - Wachstum KW - Natriumkanal KW - TrkB Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-92877 ER - TY - THES A1 - Gupta, Rohini T1 - Intracellular self-activation of the TrkB kinase domain causes FAK phosphorylation and disrupts actin filopodia dynamics T1 - Intrazelluläre Selbst-aktivierung der TrkB Kinase induziert FAK Phosphorylierung und verändert die Dynamik von Aktinfilopodien N2 - The tropomysin receptor kinase B (TrkB), the receptor for the neurotrophin brain-derived neurotrophic factor (BDNF), plays an important role in neuronal survival, neuronal differentiation, and cellular plasticity. Conventionally, TrkB activation is induced by binding of BDNF at extracellular sites and subsequent dimerization of receptor monomers. Classical Trk signaling concepts have failed to explain ligand-independent signaling of intracellular TrkB or oncogenic NTRK-fusion proteins. The intracellular activation domain of TrkB consists of a tyrosine kinase core, with three tyrosine (Y) residues at positions 701, 705 and 706, that catalyzes the phosphorylation reaction between ATPγ and tyrosine. The release of cisautoinhibition of the kinase domain activates the kinase domain and tyrosine residues outside of the catalytic domain become phosphorylated. The aim of this study was to find out how ligand-independent activation of TrkB is brought about. With the help of phosphorylation mutants of TrkB, it has been found that a high, local abundance of the receptor is sufficient to activate TrkB in a ligand-independent manner. This self-activation of TrkB was blocked when either the ATP-binding site or Y705 in the core domain was mutated. The vast majority of this self-active TrkB was found at intracellular locations and was preferentially seen in roundish cells, lacking filopodia. Live cell imaging of actin dynamics showed that self-active TrkB changed the cellular morphology by reducing actin filopodia formation. Signaling cascade analysis confirmed that self-active TrkB is a powerful activator of focal adhesion kinase (FAK). This might be the reason why self-active TrkB is able to disrupt actin filopodia formation. The signaling axis from Y705 to FAK could be mimicked by expression of the soluble, cytosolic TrkB kinase domain. However, the signaling pathway was inactive, when the TrkB kinase domain was targeted to the plasmamembrane with the help of artificial myristoylation membrane anchors. A cancer-related intracellular NTRK2-fusion protein (SQSTM1-NTRK2) also underwent constitutive kinase activation. In glioblastoma-like U87MG cells, self-active TrkB kinase reduced cell migration. These constitutive signaling pathways could be fully blocked within minutes by clinically approved, anti-tumorigenic Trk inhibitors. Moreover, this study found evidences for constitutively active, intracellular TrkB in tissue of human grade IV glioblastoma. In conclusion, the data provide an explanation and biological function for selfactive, constitutive TrkB kinase domain signaling, in the absence of a ligand. N2 - Die Rezeptortyrosinkinase TrkB, der Rezeptor für das Neurotrophin brain-derived neurotrophic factor (BDNF), spielt eine wichtige Rolle für das neuronale Überleben, die neuronale Differenzierung und die zelluläre Plastizität. Üblicherweise wird TrkB bei der Bindung von BDNF an extrazellulären Domänen durch Dimerisierung von Rezeptormonomeren aktiviert. Klassische Konzepte der Trk Signalübertragung können jedoch die Liganden-unabhängige Signalübertragung von intrazellulären TrkB- oder Onkogen-aktiven NTRK-Fusionsproteinen nicht erklären. Die intrazelluläre Aktivierungsdomäne von TrkB besitzt eine Tyrosinkinasedomäne mit drei Tyrosin (Y)-Resten an den Positionen 701, 705 und 706. Diese katalysieren die Phosphorylierungsreaktion zwischen ATPγ und Tyrosin. Durch die Enthemmung der cis-Autoinhibition wird die Kinase-Domäne aktiv und Tyrosinreste außerhalb der katalytischen Domäne werden phosphoryliert. Ziel dieser Arbeit war herauszufinden, wie es zur Liganden-unabhängigen Aktivierung von TrkB kommen kann. Mit Hilfe von TrkB-Phosphorylierungsmutanten wurde gefunden, dass eine hohe, lokale Abundanz des Rezeptors ausreicht, um TrkB Liganden-unabhängig zu aktivieren. Diese Selbstaktivierung von TrkB konnte blockiert werden, wenn entweder die ATP-bindende Domäne oder Y705 in der Kinasedomäne mutiert wurden. Die überwiegende Mehrheit dieses selbstaktivierenden TrkB wurde intrazellulär, in rundlichen Zellen ohne Filopodien, gefunden. Live-Zellbildgebung der Aktindynamik zeigte zudem, dass selbstaktives TrkB die Zellmorphologie veränderte, indem es die Bildung von Aktin-Filopodien reduzierte. Die Analyse von Signalkaskaden bestätigte, dass selbstaktives TrkB ein starker Aktivator der Focal Adhesion Kinase (FAK) ist. Dies kann der Grund sein, warum selbstaktives TrkB die Bildung von Aktin-Filopodien zerstört. Die Signalkaskade von Y705 bis FAK konnte durch Expression der löslichen, zytosolischen TrkB-Kinase-Domäne imitiert werden. Der Signalweg war jedoch inaktiv, wenn die TrkB-Kinase-Domäne durch künstliche Myristoylierung an die Plasmamembran gebunden wurde. Ein intrazelluläres NTRK2-Fusionsprotein (SQSTM1-NTRK) zeigte ebenfalls konstitutive Kinaseaktivierung. In Glioblastom-ähnlichen U87MG-Zellen reduzierte die selbstaktive TrkB-Kinase sogar die Zellwanderung. Die konstitutiven Signalwege konnten durch klinisch zugelassene, anti-tumorale Trk-Inhibitoren innerhalb von Minuten vollständig blockiert werden. Darüber hinaus zeigt diese Studie Beweise für konstitutiv-aktives, intrazelluläres TrkB im Gewebe von humanem Glioblastom Grad IV. Die Daten dieser Arbeit geben somit eine Erklärung und eine biologische Funktion für die selbst-aktive, konstitutive Signalübertragung der TrkB-Kinase-Domäne, in Abwesenheit eines Liganden. KW - TrkB KW - self-activation KW - NTRK fusions KW - tyrosine kinase KW - BDNF KW - phosphorylation KW - cancer Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233829 ER - TY - THES A1 - Bacmeister, Lucas T1 - Effect of Cadherin-13 inactivation on different GABAergic interneuron populations of the mouse hippocampus T1 - Effekt der Cadherin-13 Inaktivierung auf verschiedene GABAerge Interneuronenpopulationen im Hippocampus der Maus N2 - Cadherin-13 (CDH13) is an atypical member of the cadherin superfamily, a group of membrane proteins mediating calcium-dependent cellular adhesion. Although CDH13 shows the classical extracellular cadherin structure, the typical transmembrane and cytoplasmic domains are absent. Instead, CDH13 is attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor. These findings and many studies from different fields suggest that CDH13 also plays a role as a cellular receptor. Interestingly, many genome-wide association studies (GWAS) have found CDH13 as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and other neurodevelopmental disorders. In previous work from our research group, strong expression of Cdh13 mRNA in interneurons of the hippocampal stratum oriens (SO) was detected. Therefore, double-immunofluorescence studies were used to evaluate the degree of co-expression of CDH13 with seven markers of GABAergic interneuron subtypes. For this purpose, murine brains were double stained against CDH13 and the respective marker and the degree of colocalization in the SO of the hippocampus was assessed. Based on the result of this immunofluorescence study, quantitative differences in interneuron subtypes of the SO between Cdh13 knockout (ko), heterozygote (het) and wildtype (wt) mice were investigated in this dissertation using stereological methods. In addition, genotype- dependent differences in the expression of genes involved in GABAergic and glutamatergic neurotransmission were analyzed by quantitative real-time PCR (qRT-PCR). Primers targeting different GABA receptor subunits, vesicular GABA and glutamate transporter, GABA synthesizing enzymes and their interaction partners were used for this purpose. The results of the stereological quantification of the interneuron subtypes show no significant differences in cell number, cell density or volume of the SO between Cdh13 ko, het and wt mice. On the other hand, qRT-PCR results indicate significant differences in the expression of tropomyosin-related kinase B gene (TrkB), which encodes the receptor of brain-derived neurotrophic factor (BDNF), a regulator of GABAergic neurons. This finding supports a role for CDH13 in the regulation of BDNF signaling in the hippocampus. N2 - Cadherine sind eine große Gruppe von calciumabhängigen Typ-1 Transmembranproteinen, die an der Ausbildung von Zell-Zell-Kontakten beteiligt sind. Cadherin-13 (CDH13) ist ein atypisches Mitglied dieser Proteinfamilie. Obwohl es die gleiche extrazelluläre Struktur wie klassische Cadherine besitzt, fehlen sowohl die cytoplasmatische als auch die Transmembrandomäne. Stattdessen ist CDH13 über einen GPI-Anker an der zellulären Plasmamembran befestigt. Diese Ergebnisse und viele andere Studien aus unterschiedlichen Bereichen lassen vermuten, dass CDH13 auch als zellulärer Rezeptor wirkt. Interessanterweise ergaben verschiedene genomweite Assoziationsstudien, dass CDH13 ein vielversprechendes Kandidatengen für das Auftreten von Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS) und anderen Störungen der neuronalen Entwicklung ist. In früheren Studien unserer Arbeitsgruppe wurde eine starke Expression von Cd13 mRNA in Interneuronen des stratum oriens (SO) des Hippocampus festgestellt. Daher wurde mit Hilfe von Immunfluoreszenz der Grad der Koexpression von CDH13 mit 7 verschiedenen Markern von Subtypen GABAerger Interneuronen ermittelt. Zu diesem Zweck wurden Doppelfärbungen gegen CDH13 und den jeweiligen Marker durchgeführt und anschließend der Grad der Kolokalisation im SO des Hippocampus berechnet. Ausgehend von diesen Ergebnissen wurden in dieser Dissertation quantitative Unterschiede zwischen verschiedenen Subtypen von Interneuronen in Cdh13 knockout (ko), heterozygoten (het) und Wildtyp (wt)-Mäusen mit Hilfe von stereologischen Methoden ermittelt. Darüber hinaus wurden genotypabhängige Unterschiede in der GABAergen und glutamatergen Neurotransmission mit quantitativer Echtzeit-PCR (qRT-PCR) evaluiert. Hierzu wurden Primer eingesetzt, die sowohl auf Untereinheiten des GABA Rezeptors, GABA-synthetisierende Enzyme als auch auf GABA- und Glutamat-Transporter innerhalb synaptischer Vesikel abzielen. In der stereologischen Quantifizierung der Interneuron-Subtypen wurden keine signifikanten Unterschiede bezüglich der Zellzahl, der Zelldichte oder des Volumens des SO zwischen den verschieden Genotypen gefunden. Im Gegensatz dazu zeigten sich in der qRT-PCR signifikante Unterschiede in der Expression von tropomyosin-related kinase B (TrkB), einem Gen, das für den Rezeptor des brain-derived neurotrophic factor (BDNF) kodiert. Bei diesem handelt es sich um einen Regulator von GABAergen Neuronen. Diese Ergebnisse bekräftigen, dass CDH13 an der Regulation des BDNF-Signalwegs im Hippocampus teilnimmt. KW - Cadherine KW - GABAerge Nervenzelle KW - Hippocampus KW - Cadherin-13 KW - CDH13 KW - Tropomyosin receptor kinase B KW - TrkB KW - Maus Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172693 ER - TY - JOUR A1 - Andreska, Thomas A1 - Lüningschrör, Patrick A1 - Sendtner, Michael T1 - Regulation of TrkB cell surface expression — a mechanism for modulation of neuronal responsiveness to brain-derived neurotrophic factor JF - Cell and Tissue Research N2 - Neurotrophin signaling via receptor tyrosine kinases is essential for the development and function of the nervous system in vertebrates. TrkB activation and signaling show substantial differences to other receptor tyrosine kinases of the Trk family that mediate the responses to nerve growth factor and neurotrophin-3. Growing evidence suggests that TrkB cell surface expression is highly regulated and determines the sensitivity of neurons to brain-derived neurotrophic factor (BDNF). This translocation of TrkB depends on co-factors and modulators of cAMP levels, N-glycosylation, and receptor transactivation. This process can occur in very short time periods and the resulting rapid modulation of target cell sensitivity to BDNF could represent a mechanism for fine-tuning of synaptic plasticity and communication in complex neuronal networks. This review focuses on those modulatory mechanisms in neurons that regulate responsiveness to BDNF via control of TrkB surface expression. KW - BDNF KW - TrkB KW - subcellular trafficking KW - transactivation KW - synaptic plasticity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235055 VL - 382 ER - TY - THES A1 - Andreska, Thomas T1 - Effects of dopamine on BDNF / TrkB mediated signaling and plasticity on cortico-striatal synapses T1 - Effekte von Dopamin auf BDNF / TrkB vermittelte Signalwege und Plastizität an cortico-striatalen Synapsen N2 - Progressive loss of voluntary movement control is the central symptom of Parkinson's disease (PD). Even today, we are not yet able to cure PD. This is mainly due to a lack of understanding the mechanisms of movement control, network activity and plasticity in motor circuits, in particular between the cerebral cortex and the striatum. Brain-derived neurotrophic factor (BDNF) has emerged as one of the most important factors for the development and survival of neurons, as well as for synaptic plasticity. It is thus an important target for the development of new therapeutic strategies against neurodegenerative diseases. Together with its receptor, the Tropomyosin receptor kinase B (TrkB), it is critically involved in development and function of the striatum. Nevertheless, little is known about the localization of BDNF within presynaptic terminals in the striatum, as well as the types of neurons that produce BDNF in the cerebral cortex. Furthermore, the influence of midbrain derived dopamine on the control of BDNF / TrkB interaction in striatal medium spiny neurons (MSNs) remains elusive so far. Dopamine, however, appears to play an important role, as its absence leads to drastic changes in striatal synaptic plasticity. This suggests that dopamine could regulate synaptic activity in the striatum via modulation of BDNF / TrkB function. To answer these questions, we have developed a sensitive and reliable protocol for the immunohistochemical detection of endogenous BDNF. We find that the majority of striatal BDNF is provided by glutamatergic, cortex derived afferents and not dopaminergic inputs from the midbrain. In fact, we found BDNF in cell bodies of neurons in layers II-III and V of the primary and secondary motor cortex as well as layer V of the somatosensory cortex. These are the brain areas that send dense projections to the dorsolateral striatum for control of voluntary movement. Furthermore, we could show that these projection neurons significantly downregulate the expression of BDNF during the juvenile development of mice between 3 and 12 weeks. In parallel, we found a modulatory effect of dopamine on the translocation of TrkB to the cell surface in postsynaptic striatal Medium Spiny Neurons (MSNs). In MSNs of the direct pathway (dMSNs), which express dopamine receptor 1 (DRD1), we observed the formation of TrkB aggregates in the 6-hydroxydopamine (6-OHDA) model of PD. This suggests that DRD1 activity controls TrkB surface expression in these neurons. In contrast, we found that DRD2 activation has opposite effects in MSNs of the indirect pathway (iMSNs). Activation of DRD2 promotes a rapid decrease in TrkB surface expression which was reversible and depended on cAMP. In parallel, stimulation of DRD2 led to induction of phospho-TrkB (pTrkB). This effect was significantly slower than the effect on TrkB surface expression and indicates that TrkB is transactivated by DRD2. Together, our data provide evidence that dopamine triggers dual modes of plasticity on striatal MSNs by acting on TrkB surface expression in DRD1 and DRD2 expressing MSNs. This surface expression of the receptor is crucial for the binding of BDNF, which is released from corticostriatal afferents. This leads to the induction of TrkB-mediated downstream signal transduction cascades and long-term potentiation (LTP). Therefore, the dopamine-mediated translocation of TrkB could be a mediator that modulates the balance between dopaminergic and glutamatergic signaling to allow synaptic plasticity in a spatiotemporal manner. This information and the fact that TrkB is segregated to persistent aggregates in PD could help to improve our understanding of voluntary movement control and to develop new therapeutic strategies beyond those focusing on dopaminergic supply. N2 - Der fortschreitende Verlust der willkürlichen Bewegungskontrolle ist ein zentrales Symptom der Parkinson-Krankheit (PD). Auch heute sind wir noch nicht in der Lage, PD zu heilen. Dafür verantwortlich ist hauptsächlich ein mangelndes Verständnis von Mechanismen der Bewegungskontrolle, Netzwerkaktivität und Plastizität in motorischen Schaltkreisen, insbesondere zwischen Hirnrinde und Striatum. Der neurotrophe Faktor BDNF ist einer der wichtigsten Faktoren für die Entwicklung und das Überleben von Neuronen sowie für synaptische Plastizität im zentralen Nervensystem. BDNF ist daher ein Target für die Entwicklung neuer therapeutischer Strategien gegen neurodegenerative Erkrankungen. Zusammen mit seinem Rezeptor, der Tropomyosin-Rezeptorkinase B (TrkB), ist BDNF maßgeblich an der Entwicklung und Funktion des Striatums beteiligt. Dennoch ist nur wenig bekannt, wo BDNF an Synapsen im Striatum lokalisiert ist, und wo BDNF in Neuronen der Hirnrinde synthetisiert wird. Außerdem ist der Einfluss von Dopamin aus dem Mittelhirn auf die Kontrolle der BDNF / TrkB-Interaktion in striatalen Medium-Spiny-Neuronen (MSNs) bisher unklar. Dopamin scheint jedoch eine wichtige Rolle zu spielen, da dessen Abwesenheit zu drastischen Veränderungen der striatalen Plastizität führt. Dopamin könnte synaptische Plastizität im Striatum über eine Modulation der BDNF / TrkB-Interaktion regulieren. Um diese Fragen beantworten zu können, haben wir ein sensitives und zuverlässiges Protokoll für den immunhistochemischen Nachweis von endogenem BDNF entwickelt. Wir fanden heraus, dass BDNF im Striatum vor allem in glutamatergen Synapsen von Projektion aus dem Kortex lokalisiert ist und nicht in Terminalen dopaminerger Neurone aus dem Mittelhirn. Tatsächlich fanden wir BDNF in den Zellkörpern von Neuronen in den Schichten II-III und V des primären und sekundären motorischen Kortex sowie Schicht V des somatosensorischen Kortex. Es sind jene Hirnareale, welche dichte Projektionen zum dorsolateralen Striatum senden und entscheidend an der Steuerung von willkürlichen Bewegungen beteiligt sind. Weiterhin konnten wir zeigen, dass eben jene Projektionsneurone die Bildung von BDNF während der juvenilen Entwicklung von Mäusen zwischen 3 und 12 Wochen signifikant herunter regulieren. In striatalen MSN fanden wir zudem einen modulatorischen Effekt von Dopamin auf die Translokation von TrkB zur Zelloberfläche. In MSNs des direkten Signalweges (dMSNs), welche Dopaminrezeptor 1 (DRD1) exprimieren, konnten wir die Bildung von TrkB-Aggregaten im 6-Hydroxydopamin (6-OHDA) - Rattenmodell der Parkinson Erkankung beobachten. Dies deutet darauf hin, dass die DRD1-Aktivität die TrkB-Oberflächenexpression in diesen Neuronen steuert. Im Gegensatz dazu fanden wir heraus, dass die DRD2-Aktivierung in MSNs des indirekten Signalweges (iMSNs) eine gegensätzliche Wirkung hat. Die Aktivierung von DRD2 führt zu einer schnellen Reduktion der TrkB-Oberflächenexpression, die reversibel und von cAMP abhängig ist. Außerdem führte die Stimulation von DRD2 zu einer Induktion von Phospho-TrkB (pTrkB). Dieser Effekt war deutlich langsamer als die Wirkung auf die TrkB-Oberflächenexpression und deutet auf eine Transaktivierung von TrkB über DRD2 hin. Insgesamt scheint Dopamin entgegengesetzte Plastizitätsmodi in striatalen MSNs auszulösen, indem es auf die TrkB-Oberflächenexpression in DRD1- und DRD2-exprimierenden MSNs einwirkt. Diese Oberflächenexpression des Rezeptors ist entscheidend für die Bindung von BDNF, welches aus kortiko-striatalen Afferenzen freigesetzt wird. Dies führt zur Induktion von TrkB-vermittelten-Signaltransduktionskaskaden und Langzeitpotenzierung (LTP). Daher könnte die dopamin-vermittelte Translokalisation von TrkB das Gleichgewicht zwischen dopaminergen und glutamatergen Signalen modulieren, um die synaptische Plastizität in einer räumlich-zeitlich abgestimmten Weise zu ermöglichen. Diese Information und die Tatsache, dass TrkB bei PD stabile Aggregate bildet, könnte dazu beitragen, unser Verständnis der willkürlichen Bewegungskontrolle zu verbessern und neue therapeutische Strategien zu entwickeln, die über jene hinausgehen, welche sich auf die dopaminerge Versorgung konzentrieren. KW - Brain-derived neurotrophic factor KW - Parkinson Krankheit KW - Plastizität KW - Motorisches Lernen KW - Basalganglien KW - Brain-derived neurotrophic factor KW - TrkB KW - Basal Ganglia KW - Motor learning KW - Parkinson's disease KW - Synaptic plasticity KW - Striatum KW - Medium spiny neurons KW - Cortico-striatal projection neurons Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174317 ER -