TY - JOUR A1 - Hoernes, Thomas Philipp A1 - Faserl, Klaus A1 - Juen, Michael Andreas A1 - Kremser, Johannes A1 - Gasser, Catherina A1 - Fuchs, Elisabeth A1 - Shi, Xinying A1 - Siewert, Aaron A1 - Lindner, Herbert A1 - Kreutz, Christoph A1 - Micura, Ronald A1 - Joseph, Simpson A1 - Höbartner, Claudia A1 - Westhof, Eric A1 - Hüttenhofer, Alexander A1 - Erlacher, Matthias David T1 - Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions JF - Nature Communications N2 - The precise interplay between the mRNA codon and the tRNA anticodon is crucial for ensuring efficient and accurate translation by the ribosome. The insertion of RNA nucleobase derivatives in the mRNA allowed us to modulate the stability of the codon-anticodon interaction in the decoding site of bacterial and eukaryotic ribosomes, allowing an in-depth analysis of codon recognition. We found the hydrogen bond between the N1 of purines and the N3 of pyrimidines to be sufficient for decoding of the first two codon nucleotides, whereas adequate stacking between the RNA bases is critical at the wobble position. Inosine, found in eukaryotic mRNAs, is an important example of destabilization of the codon-anticodon interaction. Whereas single inosines are efficiently translated, multiple inosines, e.g., in the serotonin receptor 5-HT2C mRNA, inhibit translation. Thus, our results indicate that despite the robustness of the decoding process, its tolerance toward the weakening of codon-anticodon interactions is limited. KW - chemical modification KW - nucleic acids KW - ribozymes KW - RNA Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-321067 VL - 9 ER - TY - THES A1 - Hippius, Catharina T1 - Multichromophoric Arrays of Perylene Bisimide Dyes - Synthesis and Optical Properties T1 - Multichromophore Perylenbisimidkaskaden - Synthese und optische Eigenschaften N2 - The present work deals with the synthesis and the investigation of the photophysical properties of covalently constructed calix[4]arene–perylene bisimide dye arrays containing various PBI units. The obtained conjugates are characterized with respect towards their application in a new, zigzag-type architecture of artificial light-harvesting systems. For this purpose, orange (core-unsubstituted), red (6,7,11,12-tert-butylphenoxy-functionalized) and green (1,7-pyrrolidino-substituted) perylene bisimide building blocks have been attached to the calix[4]arene scaffold. First, the monochromophoric reference systems have been studied, and second, the photophysical properties of a comprehensive series of newly synthesized, multichromophoric calix[4]arene–perylene bisimide conjugates showing efficient energy transfer processes between the individual dye subunits have been investigated. Furthermore, a series of bichromophoric compounds containing identical chromophoric units has been obtained. Towards this goal, a variety of spectroscopic techniques such as UV/vis absorption, steady state and time-resolved fluorescence emission, and femtosecond transient absorption spectroscopy as well as a spectrotemporal analysis of the obtained data has been applied. This work presents a new concept for an artificial light-harvesting system positioning the dye units by means of calix[4]arene spacers along a zigzag chain. The investigations start with the syntheses and optical properties of the monochromophoric building blocks and result in an elaborate study on the energy and electron transfer processes occurring after photoexcitation in a comprehensive series of multichromophoric calix[4]arene–perylene bisimide conjugates. Finally, the photophysical properties of a series of compounds containing each two identical PBI units are discussed. N2 - Die vorliegende Arbeit hat die Synthese und die Untersuchung der photophysikalischen Eigenschaften kovalent verknüpfter Calix[4]aren–Perylenbisimid(PBI)-Farbstoffkaskaden zum Thema, die verschiedenartige PBI-Chromophore enthalten. Dazu wurden orange (kernunsubstituierte), rote (6,7,11,12-tert-butylphenoxy-funktionalisierte) und grüne (1,7-pyrrolidino-substituierte) Perylenbisimid-Bausteine an ein Calix[4]arengerüst geknüpft. Zunächst wurden die monochromophoren Referenzverbindungen bezüglich ihrer photophysikalischen Eigenschaften untersucht. Im Anschluss daran wurde eine umfassende Serie von Calix[4]aren–Perylenbisimid-Farbstoffkaskaden hinsichtlich der nach Photoanregung im angeregten Zustand stattfindenden Prozesse charakterisiert. Die erhaltenen Kaskaden weisen hocheffiziente und gerichtete Energietransferprozesse zwischen den einzelnen Untereinheiten auf, deren Transferraten sich unter Annahme einer Zickzack-Anordnung der Chromophoreinheiten gemäß der Förstertheorie erklären lassen. Weiterhin wurde eine Serie von Farbstoffkaskaden, die jeweils zwei identische PBI-Chromophore enthalten, bezüglich ihrer photophysikalischen Eigenschaften untersucht. Zur Charakterisierung wurden jeweils verschiedene spektroskopische Techniken wie UV/vis-Absorptions-, stationäre und zeitaufgelöste Fluoreszenzemissions-, sowie femtosekundenzeitaufgelöste transiente Absorptionsspektroskopie herangezogen, sowie zusätzlich eine spektrotemporale Analyse der erhaltenen Daten durchgeführt. Die vorliegende Arbeit beschreibt eine neue Architektur von künstlichen Lichtsammelsystemen, deren wesentliches Merkmal eine zickzack-Anordnung der Chromophoreinheiten ist. Zunächst wurden die Synthese und die optischen Eigenschaften der monochromophoren Bausteine diskutiert, und anschließend die Energie- und Elektronentransferprozesse nach Photoanregung in einer umfangreichen Serie von multichromophoren Perylenbisimid–Calix[4]arenkaskaden untersucht. Abschließend wurden die photophysikalischen Eigenschaften einer Serie von Calix[4]aren–PBI-Konjugaten diskutiert, die jeweils zwei identische PBI Chromophore enthalten. KW - Fluoreszenz-Resonanz-Energie-Transfer KW - Perylenbisimide KW - Farbstoffe/Pigmente KW - Calix[4]aren KW - transiente Absorption KW - FRET KW - Dyes/pigments KW - energy transfer KW - multichromophoric arrays KW - transient absorption spectroscopy KW - calix[4]arene Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24767 ER - TY - JOUR A1 - Herbst, Stefanie A1 - Soberats, Bartolome A1 - Leowanawat, Pawaret A1 - Stolte, Matthias A1 - Lehmann, Matthias A1 - Würthner, Frank T1 - Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases JF - Nature Communications N2 - Many discoid dyes self-assemble into columnar liquid-crystalline (LC) phases with packing arrangements that are undesired for photonic applications due to H-type exciton coupling. Here, we report a series of crystalline and LC perylene bisimides (PBIs) self-assembling into single or multi-stranded (two, three, and four strands) aggregates with predominant J-type exciton coupling. These differences in the supramolecular packing and optical properties are achieved by molecular design variations of tetra-bay phenoxy-dendronized PBIs with two N–H groups at the imide positions. The self-assembly is driven by hydrogen bonding, slipped π–π stacking, nanosegregation, and steric requirements of the peripheral building blocks. We could determine the impact of the packing motifs on the spectroscopic properties and demonstrate different J- and H-type coupling contributions between the chromophores. Our findings on structure–property relationships and strong J-couplings in bulk LC materials open a new avenue in the molecular engineering of PBI J-aggregates with prospective applications in photonics. KW - liquid crystals KW - self-assembly Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319914 VL - 9 ER - TY - THES A1 - Herbst [geb. Höhne], Stefanie T1 - Liquid Crystalline Perylene Bisimide Assemblies T1 - Flüssigkristalline Perylenbisimid Strukturen N2 - Thus, the main focus of this thesis was to generate and investigate new one-dimensional LC PBI J-aggregates of an entirely new PBI organization with the transition dipole moments of the chromophores arranged parallel to the columnar axis and in slipped pi-pi stacking fashion to form highly fluorescent J-aggregates. Towards this goal, the tetra-bay substituted PBI 4c bearing free NH functional groups at the imide positions and four dendrons with branched ethylhexyl alkoxy chains at the meta-position of the phenoxy spacer (Figure 8.1a) was synthesized and compared to a literature known reference PBI 1. The mesogenic dendrons ensure LC character of the dye, which was confirmed by POM, DSC and extensive X-ray analysis. Furthermore, the sterically demanding bay-substituents prevent the cofacial assembly of the chromophores and force the dyes into a slipped pi-stacked order with the main transition dipole moments of the dyes oriented parallel to the columnar axis. X-ray analysis revealed that PBI 4c assembles into columnar triple-stranded helices consisting of side-to-side stacked molecules, which organize into a Colh phase (Figure 8.1b). FT-IR experiments of a thin film and aggregates in MCH solution confirmed the formation of H-bonds between the imide moieties. Temperature-dependent investigations furthermore proved a reversible formation of H-bonds and polarized FT-IR experiments finally gave evidence for the direction of the H-bonds along the shearing respective the columnar axis (Figure 8.1c). This was additionally verified by polarized UV-Vis absorption studies of aligned thin films. The changes in the UV-Vis absorption spectra of concentration- and temperature-dependent experiments in MCH are in agreement with the formation of J-aggregates and could be fitted to a nucleation-elongation growth mechanism. Remarkably, fluorescence spectroscopy studies revealed highly emissive aggregates in solution. These various spectroscopic techniques proved the utilization of directional noncovalent forces like hydrogen-bonding and pi-pi interactions in a cooperative manner forcing the PBI molecules in an unprecedented organization of a slipped pi-stacked arrangement with the orientation of the molecular axis and the respective transition dipole moments parallel to the columns of the LC phase. By the group of Dietrich the formation of exciton-polaritons in imprinted LC pillar microcavities as consequent use of the LC 4c was reported for the first time.In the second part of this thesis the hierarchical organization of LC PBIs into defined single-, double-, triple- and quadruple-stranded J-aggregates within crystalline and columnar LC phases, partially arranged in helical supramolecular structures in dependence of the molecular design was demonstrated. This was achieved via the preparation of a library of twelve molecules PBI 3-6(a-c) (Figure 8.2a) that was synthesized by varying the substitution position of the dendrons at the phenoxy-spacer from ortho to meta or para and by introducing an additional methyl group in ortho-position. Also the length and shape of the alkoxy chains was changed. Consequently, the impact of the sterical demand of the bay substituents concerning their phase properties, molecular arrangement and exciton coupling was investigated. POM, DSC and X-ray studies revealed the formation of only crystalline phase for the ortho-substituted PBIs 3a-c, whereas the other derivatives generated SC or LC phases. The main focus was the series with the n-C12-alkoxy chains. For the corresponding PBIs 4-6b columnar LC phases were confirmed. Retrostructural analysis by modelling and simulations gave indications for a single stranded organization for PBI 3b, a double-stranded helix for PBI 6b, a triple-stranded helical arrangement for PBI 5b and a quadruple-stranded helix for PBI 4b (Figure 8.2b-d). For all four derivatives the same molecular orientation within the columns as for PBI 4c was proven by polarized FT-IR and UV-Vis absorption studies in aligned thin films. The organization in helices of different number of strands in the Cr and LC phases of PBI 3b, 4b, 5b and 6b offered a unique possibility to elucidate the influence of particular packing arrangements on dye aggregate interactions with light. In particular, it can be investigated how exciton coupling of the dyes’ transition dipole moments and fluorescence properties are affected. In this context, the spectroscopic properties were investigated in thin film, which revealed a strong bathochromic shift of the absorption maxima compared to the monomers in solution in dependence on the number of strands for PBIs 4-6b in contrast to PBI 3b (Figure 8.2e). The same tendency was observed for the respective aggregates in MCH solution. The spectral changes obtained during concentration- and temperature-dependent UV-Vis absorption studies verified the formation of J-aggregates in MCH solution and solid state. The respective aggregates are highly likely formed via a nucleation-elongation growth mechanism. Appliance of Kasha’s exciton theory on the supramolecular aggregates revealed different contributions of H- and J-type coupling for the oligo-stranded helices. Under these considerations, it delivered an explanation for the absorption and fluorescence properties of the assemblies and declares the “best” J-aggregate for the double stranded arrangement of PBI 6b with purely negative couplings among neighbour molecules and a quantum yield above 74 % of the aggregates in MCH solution. With this H-bonded PBI-based library approach of twelve derivatives it could be shown how molecular engineering of perylene bisimide dyes can be used to design defined, complex supramolecular assemblies with unprecedented packing patterns and concomitant intriguing spectroscopic properties. So far, the formation of defined liquid crystalline supramolecular structures of tetra-bay substituted PBIs by double H-bonding between free imide moieties and pi-pi interactions between the chromophores was demonstrated. The impact of the H-bonds on the molecular arrangement was investigated in the next part of this thesis. In this regard, PBIs 7 and 8 bearing a methyl or cyclohexyl group at the imide position (Figure 8.3a) were synthesized and compared to PBI 4c. The soft character of the solid state for PBIs 7 and 8 was confirmed by POM, DSC and X-ray analysis. The X-ray studies further revealed for both PBIs a change of the molecular assembly towards helical columnar structures of conventional pi-stacked chromophores (Figure 8.3b) when the directed H-bonds cannot contribute as noncovalent interactions to the assembly formation. Temperature-dependent UV-Vis absorption studies demonstrated the importance of H-bonding in MCH solution in the way that the formation of J-aggregates as for PBI 4c could not be observed for the imide substituted molecules. In the next step, the spectroscopic properties in thin film were investigated. For PBI 7 a J-type band and fluorescence spectra with an enlarged Stokes shift and increased fluorescence lifetime of 11.4 ns, compared to PBI 4c, was obtained, suggesting the generation of excimer type emission by considering the assumed conventional stacking of rotational displaced molecules from X-ray analysis. With polarized UV-Vis absorption experiments the orientation of the molecules perpendicular to the shearing direction and subsequently to the columnar axis was confirmed. These diverse investigations clearly demonstrated the imperative of H-bonds for stable, defined, LC J-aggregates with the transition dipole moments parallel to the columnar axis. With PBIs 7 and 8 it is impressively shown how small changes in the molecular structure influence the molecular arrangement dependent on the cooperation of non-covalent interactions like H-bonding and pi-pi stacking. In the last part of this thesis the generation of two-dimensional LC arrangements is presented. Since tetra-bay substituted PBIs lead always to twisted cores preventing lamellar arrangement, here 1,7-disubstitution and the simultaneous retention of the free imide positions was chosen to generate LC lamellar phases of PBIs 9a, 9b and 10 (Figure 8.4a). This molecular design was expected to form planar perylene cores that can strongly interact by pi-pi stacking and H-bonding. POM, DSC and X-ray investigations of the compounds suggest lamellar LC phases for PBIs 9a and 9b and a soft phase for PBI 10. In this regard, the goal of the formation of LC lamellar phase of PBIs could be attained. The change from dendrons with n-C12-alkoxy chains to large fork-like mesogens like in 9b clearly changed the phase properties. PBI 9b exhibits the lowest clearing point, high phase stability, least viscosity, easy shearability at room temperature and phase transitions between lamellar and Colh phases dependent on temperature. The formation of H-bonds parallel to the layers was demonstrated by polarized FT-IR experiments for all three PBIs. Concentration-dependent UV-Vis absorption studies revealed the formation of a J-type aggregate, which seems to exhibit an overall two-dimensional structure. With STM investigations the formation of lamellar structures from drop-casted 9a and 10 solutions in 1-phenyloctane on HOPG surface could be observed. Figure 8.4b illustrates a schematic possible arrangement of the molecules in the layers (here exemplarily demonstrated for PBI 9a), which has to be further confirmed by modelling and simulations. Unfortunately, fluorescence investigations of the thin films revealed non- or only slightly emissive LC states, which make them negligible for photonic applications. Nevertheless, the synthesized and analyzed compounds might be an inspiration for further investigations on the path to two-dimensional exciton transport for photonic devices. N2 - Das Hauptaugenmerk dieser Arbeit war daher darauf gerichtet, eindimensionale flüssigkristalline J-Aggregate zu erzeugen und zu untersuchen, die eine vollkommen neue Anordnung von Perylenbisimiden aufweisen und deren Übergangsdipolmomente parallel zur Säulenachse ausgerichtet sind. Um stark fluoreszierende J-Aggregate zu bilden, sollen die Moleküle zudem in einer zueinander verschobenen pi-pi-Stapelung angeordnet sein. Um dieses Ziel zu erreichen, wurde zunächst das vierfach bucht-substituierte PBI 4c synthetisiert und mit dem literaturbekannten Referenzmolekül (PBI 1) verglichen. Das PBI 4c weist dabei freie NH-Gruppen in den Imidpositionen und vier verästelte Substituenten in der meta-Position der Phenoxygruppe auf (Abbildung 1a). Die Substituenten bestehen dabei aus jeweils drei verzweigten Ethylhexyl-Alkoxyketten. Diese mesogenen Substituenten stellen den flüssigkristallinen Charakter des Farbstoffmoleküls sicher, was durch POM, DSC und umfassende Röntgenstrukturuntersuchungen bestätigt werden konnte. Weiterhin verhindern die sterisch anspruchsvollen Buchtsubstituenten eine cofaciale Anordnung der Chromophore und zwingen die Farbstoffmoleküle in zueinander verschobene, pi-gestapelte Packungsstrukturen, in denen die Übergangsdipolmomente der Perylenbisimide parallel zur Säulenachse angeordnet sind. Die Analyse der Röntgenstrukturuntersuchungen zeigt die Bildung säulenartiger, drei-strängiger Helices, die sich aus vertikal gestapelten Molekülen zusammensetzen und sich letztendlich in einer hexagonalen flüssigkristallinen Phase anordnen (Abbildung 1b). FT-IR-Experimente dünner Schichten und der Aggregate in MCH-Lösungen bestätigen, dass zwischen den Imidgruppen in der flüssigkristalline Phase und der Aggregate in Lösung die gleiche Art von Wasserstoffbrückenbindungen existiert. Durch polarisierte FT-IR-Experimente und temperaturabhängige Untersuchungen konnte weiterhin gezeigt werden, dass die Wasserstoffbrückenbindungen in diesen Systemen zum Einen entlang der Scherrichtung und der Säulenachse ausgerichtet sind und deren Bildung zum Anderen reversibel ist. Die Ausrichtung wurde zusätzlich durch polarisierte UV-Vis-Absorptionsuntersuchungen an gerichteten Dünnschichten bestätigt. Die spektralen Änderungen in konzentrations- und temperaturabhängigen UV-Vis-Absorptionsstudien in MCH stimmen mit der Bildung von J-Aggregaten überein. Die Daten konnten durch Ausgleichskurven einem kooperativen (Kernbildungs-Verlängerungs-) Mechanismus zugeordnet werden. Bemerkenswerterweise zeigten Fluoreszenzuntersuchungen, dass die Aggregate in Lösung sehr stark emittieren. Die verwendeten spektroskopischen Untersuchungsmethoden beweisen die strukturellen Einflussmöglichkeiten über gerichtete, nicht-kovalente Kräfte wie Wasserstoff-brückenbindungen und pi-pi-Wechselwirkungen in einem kooperativen Zusammenspiel zur gezielten Bildung einer bisher unbekannten Molekülanordnung in Flüssigkristallen. In dieser neuen Struktur sind die Moleküle zueinander verschoben pi-gestapelt und mit der Molekülachse und dem entsprechenden Übergangsdipolmomentes parallel zur Säulenachse ausgerichtet. Unter Verwendung von PBI 4c konnten unsere Kooperationspartner in der Technischen Physik der Universität Würzburg in der Folge erstmalig über die Bildung von Exziton-Polaritonen in aufgedruckten, flüssigkristallinen Säulenmikrokavitäten berichten.[175] Im zweiten Teil dieser Arbeit wird gezeigt, wie sich durch molekulares Design definierte ein-, zwei-, drei- und viersträngige J-Aggregate innerhalb kristalliner oder kolumnarer flüssigkristalliner Phasen bilden. Diese Aggregate bilden hierarchisch aufgebaute, supramolekulare Strukturen, die sich zu einem großen Teil in Helices organisieren. Hierfür wurden Verbindungen für eine Bibliothek, bestehend aus zwölf Molekülen PBI 3-6(a-c) (Abbildung 2a), synthetisiert, indem die Position der verästelten Substituenten an den Phenoxygruppen zwischen ortho, meta und para variiert wurde. Zusätzlich wurde noch eine Methylgruppe in ortho-Position eingeführt sowie sowohl die Länge als auch die Art der Alkoxyketten geändert. Anschließend wurde der Einfluss des sterischen Anspruchs der Buchtsubstituenten in Bezug auf die Eigenschaften der Phasen, der Molekülanordnung und der Exzitonenkopplung untersucht. POM, DSC and Röntgenstrukturanalysen bestätigten, dass die ortho-substituierten PBIs 3a-c nur kristalline Phasen ausbildeten, wohingegen die anderen Derivate sowohl weichkristalline als auch flüssigkristalline Phasen generierten. Der Fokus lag dabei auf der Untersuchung der Serie mit n-C12-Alkoxyketten und ergab die Bildung säulenartiger, flüssigkristalliner Phasen für alle drei PBIs 4-6b. Das Erstellen von Aggregatmodellen unter Verwendung der röntgenkristallografischen Daten und die Simulation von Röntgenbeugungsbildern mit Hilfe dieser Modelle ergaben eindeutig die Bildung einer einsträngigen Molekülanordnung für PBI 3b, eine Doppelstranghelix für PBI 6b, eine dreisträngige, helikale Anordnung für PBI 5b und einer viersträngigen Helix von PBI 4b (Abbildung 2b-d). Polarisierte FT-IR und UV-Vis Absorptionsexperimente bewiesen für alle vier Derivate die gleiche molekulare Orientierung in gerichteten dünnen Schichten wie bereits für PBI 4c. Die aus den Röntgenmessungen hergeleiteten Anordnungen in Helices bestehend aus einer unterschiedlichen Anzahl von Strängen in kristallinen und flüssigkristallinen Phasen von PBI 3-6b eröffneten eine einzigartige Möglichkeit, den Einfluss der molekularen Packung auf die Wechselwirkungen der Farbstoffaggregate mit Licht aufzuklären. Im Besonderen sollte dabei der Einfluss in Bezug auf die Exzitonenkopplung der Übergangsdipolmomente der Farbstoffmoleküle in UV-Vis-Absorptionsspektren und Fluoreszenzeigenschaften untersucht werden. In diesem Zusammenhang wurden die spektroskopischen Eigenschaften der Derivate in Dünnschichten untersucht. Mit Ausnahme von PBI 3b wurde eine stark bathochrome Verschiebung der Absorptionsmaxima in Abhängigkeit der Anzahl der Stränge im Vergleich zu den Absorptionsmaxima der entsprechenden Monomere in Lösung beobachtet (Abbildung 2e). Die gleiche Tendenz konnte auch für die entsprechenden Aggregate in Lösung beobachtet werden. Die festgestellten spektralen Änderungen in konzentrations- und temperatur-abhängigen Absorptionsstudien in MCH-Lösungen bestätigten die Bildung von J-Aggregaten sowohl in Lösung als auch in der Festphase. Die Anwendung von Kashas Exzitonentheorie auf die supramolekularen Aggregate zeigte, dass H- und J-Kopplungen in unterschiedlichen Teilen bei den mehrsträngigen Helices auftreten. Diese Ergebnisse lieferten auch eine Erklärung für die Absorptions- und Fluoreszenzeigenschaften der Aggregate und ergaben, dass die doppelsträngige Helix von PBI 6b mit einer Fluoreszenzquantenausbeute von über 74 % das „beste“ J-Aggregat aller getesteten Derivate bildet, da in diesem nur Anteile reiner J-Kopplungen („negativer“ Kopplungen) zwischen benachbarten Molekülen auftreten. Durch den Ansatz einer Bibliothek von zwölf über Wasserstoffbrücken verbundener PBIs konnte gezeigt werden, inwieweit der zielgerichtete strukturelle Aufbau von PBI-Farbstoffmolekülen genutzt werden kann, um definierte, hochkomplexe Strukturen mit einer bisher unbekannten molekularen Anordnung und gleichzeitig sehr interessanten spektroskopischen Eigenschaften zu erzeugen. Bis hier wurde gezeigt, wie definierte, flüssigkristalline, supramolekulare Strukturen von vierfach buchtsubstituierten PBIs durch das Zusammenwirken von Wasserstoffbrücken-bindungen zwischen den Imidpositionen und pi-pi-Wechselwirkungen zwischen den Chromophoren gebildet werden können. Der Einfluss der Wasserstoffbrückenbindungen sollte dabei im nächsten Teil näher untersucht werden. Diesbezüglich wurden PBI 7 und 8 synthetisiert, die entsprechend jeweils Methyl- oder Cyclohexylgruppen in den Imidpositionen tragen (Abbildung 3a). Anschließend wurden diese mit PBI 4c verglichen. POM, DSC und Röntgenstrukturuntersuchungen bestätigten die Bildung einer weichen Phase für PBI 7 und 8. Weiterhin ergaben die Röntgenbeugungsexperimente für beide PBIs eine Änderung der molekularen Anordnung zu helikalen, säulenartigen Aggregaten, in denen die Chromophore pi-gestapelt organisiert sind (Abbildung 3b), wenn die Wasserstoffbrückenbindungen nicht mehr als Wechselwirkungen zur Aggregatbildung beitragen können. Temperaturabhängige UV-Vis-Absorptionsstudien verdeutlichten die Relevanz der Wasserstoffbrückenbindungen in MCH-Lösungen für die Bildung von stabilen J-Aggregaten. Anders als für PBI 4c konnte die Ausbildung von J-Aggregaten in Lösung für die beiden anderen Derivate nicht beobachtet werden. Im nächsten Schritt wurden die spektroskopischen Eigenschaften in Dünnschichten untersucht. Für PBI 7 konnte eine J-artige Bande und ein Fluoreszenzspektrum mit einer besonders großen Stokesverschiebung und einer sehr langen Fluoreszenzlebensdauer im Vergleich zu den Daten von PBI 4c detektiert werden. Unter Beachtung der molekularen Anordnung von konventionell gestapelten, zueinander verdrehten Molekülen, die aus Röntgenstrukturanalysen hergeleitet wurde, deuten diese Ergebnisse auf die Erzeugung einer excimerartigen Emission hin. Die Anordnung der Moleküle senkrecht zur Scherrichtung und demzufolge auch senkrecht zur Säulenachse wurde mittels polarisierter UV-Vis-Absorptionsmessungen untermauert. Diese unterschiedlichen Untersuchungsmethoden deuten gemeinsam darauf hin, wie zwingend erforderlich Wasserstoffbrückenbindungen für die Bildung definierter, flüssigkristalliner J-Aggregate sind, in denen die Übergangsdipolmomente der Chromophore parallel zur Säulenachse ausgerichtet sind. Mit der Synthese von PBI 7 und 8 konnte eindrucksvoll gezeigt werden, wie bereits kleine Änderungen in der Molekülstruktur einen großen Einfluss auf die Aggregatstruktur haben können, wenn diese vom Zusammenwirken verschiedener nichtkovalenter Wechselwirkungen wie Wasserstoffbrückenbindungen und pi-pi Wechselwirkungen abhängig ist. Der letzte Teil dieser Arbeit handelt von der Bildung zweidimensionaler flüssigkristalliner Anordnungen. Da vierfach buchtsubstituierte PBIs immer eine Verdrehung des Kernes hervorrufen und damit die Bildung lamellarer Strukturen verhindern, wurde hier der Ansatz der Reduzierung auf eine 1,7-Zweifachsubstitution unter gleichzeitiger Beibehaltung der freien Imidgruppen gewählt. Von diesem molekularen Design wurde erwartet, dass die planaren Perylenkerne über pi-pi-Wechselwirkungen und Wasserstoffbrückenbindungen stark miteinander wechselwirken und somit zweidimensionale Aggregate bilden können. POM, DSC und Röntgenstrukturanalysen bestätigen die Bildung lamellarer flüssigkristalliner Phasen von PBI 9a und 9b (Abbildung 4a) und einer weichen Phase von PBI 10. Der Austausch der Substituenten, die n-C12-Alkoxyketten tragen, durch gabelartige Mesogene, wie bei PBI 9b, bewirkt deutliche Änderungen der Phaseneigenschaften. PBI 9b weist den niedrigsten Klärpunkt, die höchste Phasenstabilität, die geringste Viskosität, leichte Scherbarkeit bei Raumtemperatur und interessante Phasenübergänge zwischen lamellaren und säulenartig hexagonalen Phasen in Abhängigkeit der Temperatur auf. Die Bildung von Wasserstoffbrückenbindungen parallel zu den Schichten konnte mit polarisierten FT-IR-Experimenten für alle drei Derivate gezeigt werden. Konzentrationsabhängige UV-Vis-Absorptionsuntersuchungen bestätigten die Ausbildung eines J-artigen Aggregates in MCH-Lösung, welches eine zweidimensionale Struktur aufzuweisen scheint. Mittels STM-Untersuchungen konnten lamellare Strukturen von PBI 9a und 10 Schichten in 1-Phenyloktan auf hochgeordnetem pyrolytischem Graphit beobachtet werden. Abbildung 4b veranschaulicht die Anordnung der Moleküle in den Schichten, in diesem Fall exemplarisch für PBI 9a gezeigt. Leider haben Fluoreszenzuntersuchungen gezeigt, dass die Dünnschichten keine oder eine nur sehr geringe Emission aufweisen und somit nicht für photonische Anwendungen geeignet sind. Nichtsdestotrotz könnten diese Verbindungen Inspirationen für weitere Untersuchungen sein und Ansatzpunkte liefern, das Ziel eines zweidimensionalen Exzitonentransportes für photonische Anwendungen zu erreichen. KW - Flüssigkristall KW - Perylenderivate KW - Liquid Crystal KW - Perylene Bisimide KW - J-Aggregate KW - Flüssigkristall KW - Liquid Crystals KW - Perylene Bisimides KW - Perylenbisimide Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164857 ER - TY - THES A1 - Henn, Julian T1 - The electron density : a bridge between exact quantum mechanics and fuzzy chemical concepts T1 - Die Elektronendichte: Eine Brücke zwischen exakter Quantenmechanik und unscharfen chemischen Konzepten N2 - Summary The nature of the chemical bond is a topic under constant debate. What is known about individual molecular properties and functional groups is often taught and rationalized by explaining Lewis structures, which, in turn, make extensive use of the valence concept. The valence concept distinguishes between electrons, which do not participate in chemical interactions (core electrons) and those, which do (single, double, triple bonds, lone-pair electrons, etc.). Additionally, individual electrons are assigned to atomic centers. The valence concept is of paramount success: It allows the successful planning of chemical syntheses and analyses, it explains the behavior of individual functional groups, and, moreover, it provides the “language” to think of and talk about molecular structure and chemical interactions. The resounding success of the valence concept may be misleading to forget its approximative character. On the other hand, quantum mechanics provide in principle a quantitative description of all chemical phenomena, but there is no discrimination between electrons in quantum mechanics. From the quantum mechanical point of view there are only indistinguishable electrons in the field of the nuclei, i.e., it is impossible to assign a given electron to a particular center or to ascribe a particular purpose to individual electrons. The concept of indistinguishability of micro particles is founded on the Heisenberg uncertainty relation, which states, that wavepackets diverge in the 6N dimensional phase space, such that individual trajectories can not be identified. Hence it is a deep-rooted and approved physical concept. As an introduction to the present work density partitioning schemes were discussed, which divide the total molecular density into chemically meaningful areas. These partitioning schemes are intimately related to either the concepts of bound atoms in a molecule (as in the Atoms In Molecules theory (AIM) according to Bader or as in the Hirshfeld partitioning scheme) or to the concept of chemical structure in the sense of Lewis structures, which divide the total molecular density into core and valence density, where the valence density is split up again into bonding and non-bonding electron densities. Examples are early and recent loge theories, the topological analysis by means of the Electron Localization Function (ELF), and the Natural Bond Orbital (NBO) approach. Of these partitioning schemes, the theories according to Bader (AIM), to Becke and Edgecomb (ELF) and according to Weinhold (NBO and Natural Resonance Theory, NRT), respectively, were reviewed in detail critically. Points of criticism were explicated for each of the mentioned theories. Since theoretically derived electron densities are to be compared to experimentally derived densities, a brief introduction into the theory of X-ray di®raction experiments was given and the multipole formalism was introduced. The procedure of density refinement was briefly discussed. Various suggestions for improvements were developed: One strategy would be the employment of model parameters, which are to a maximum degree mutually orthogonal, with the object of minimizing correlations among the model parameters, e.g., to introduce nodal planes into the radial functions of the multipole model. A further suggestion involves the guidance of the iterative refinement procedure by an extremum principle, which states, that when di®erent solutions to the least squares minimization problem are available with about the same statistical measures of quality and with about the same residual density, then the solution is to prefer, which yields a minimum density at the bond critical point (BCP) and a maximum polarity in terms of the ratio of distances between the BCP and the nuclei. This suggestion is based on the well known fact, that the bond polarity (in terms of the ratio of distances between the BCP and the respective nuclei) is underestimated in the experiment. Another suggestion for including physical constraints is the explicit consideration of the virial theorem, e.g., by evaluating the integration of the Laplacian over the entire atomic basins and comparing this value to zero and to the value obtained from the integration of the electron gradient field over the atomic surface. The next suggestion was to explicitly use the electrostatic theorem of Feynman (often also denoted as Hellmann-Feynman theorem), which states, that the forces onto the nuclei can be calculated from the purely classical electrostatic forces of the electron distribution and the nuclei distribution. For a stationary system, these forces must add to zero. This also provides an internal quality criterion of the density model. This can be performed in an iterative way during the refinement procedure or as a test of the final result. The use of the electrostatic theorem is expected to reduce significantly correlations among static density parameters and parameters describing vibrations, since it is a valuable tool to discriminate between physically reasonable and artificial static electron densities. All of these mentioned suggestions can be applied as internal quality criteria. The last suggestion is based on the idea to initiate the experimental refinement with a set of model parameters, which is, as much as possible close to the final solution. This can be achieved by performing periodic boundary conditions calculations, from which theoretically created files are obtained, which contain the Miller indices (h, k, l) and the respective intensity I. This file is used for a model parameter estimation (refinement), which excludes vibrations. The resulting parameters can be used for the experimental refinement, where, in a first step, the density parameters are fixed to determine the parameters describing vibrations. For a fine tuning, again the electrostatic theorem and the other above mentioned suggestions could be applied. Theoretical predictions should not be biased by the method of computation. Therefore the dependence of the density analyzing tools on the level of calculation (method of calculation/basis set) and on the substituents in complex chemical bonding situations were evaluated in the second part of the present work. A number of compounds containing formal single and double sulfur nitrogen bonds was investigated. For these compounds, experimental data were also available. The calculated data were compared internally and with the experimental results. The internal comparison was drawn with regard to questions of convergency as well as with regard to questions of consistency: The resulting molecular properties from NBO/NRT analyses were found to be very stable, when the geometries were optimized at the respective level of theory. This stability is valid for variations in the methods of calculation as well as for variations in the basis set. Only the individual resonance weights of the contributing Natural Lewis Structures differed considerably depending on the level of calculation and depending on the substituents. However, the deviations were in both cases to a large extent within a limit which preserves the descending order of the leading resonance structure weights. The resulting bond orders, i.e., the total, covalent and ionic bond order from NRT calculations, were not affected by the shift in the resonance weights. The analysis of the bond topological parameters resulted in a discrimination between insensitive parameters and sensitive parameters. The stable parameters do neither depend strongly on the method of calculation nor on the basis set. Only minor variation occurs in the numerical values of these parameters, when the level of calculation is changed or even when other functional groups (H, Me, or tBu) are employed, as long as the methods of calculation do not drop considerably below a standard level. The bond descriptors of the sulfur nitrogen bonds were found to be also stable with respect to the functional groups R = H, R = Me, and R = tBu. Stable parameters are the bond distance, the density at the bond critical point (BCP) and the ratio of distances between the BCP and the nuclei A and B, which varies clearly when considering the formal bond type. For very small basis sets like the 3-21G basis set, this characteristic stability collapses. The sensitive parameters are based on the second derivatives of the density with respect to the coordinates. This is in accordance with the well known fact, that the total second derivative of the density with respect to the coordinates is a strongly oscillating function with positive as well as negative values. A profound deviation has to be anticipated as a consequence of strong oscillations. lambda3, which describes the local charge depletion in the direction of the interaction line, is the most varying parameter. A detailed analysis revealed that the position of the BCP in the rampant edge of the Laplacian distribution is responsible for the sensitivity of the numerical value of lambda3 in formal double bonds. Since the slope of the Laplacian assumes very high values in its rampant edge, a tiny displacement of the BCP leads already to a considerable change in lambda3. This instability is not a failure of the underlying theory, but it yields de facto to a considerable dependence of sensitive bond topological properties on the method of calculation and on the applied basis sets. Since the total second derivative is important to judge on the nature of the bond in the AIM theory (closed shell interactions versus shared interactions), the changes in lambda3 can lead to differing chemical interpretations. The comparison of theoretically derived bond topological properties of various sulfur nitrogen bonds provides the possibility to measure the self consistency of this data set. All data sets clearly exhibit a linear correlation between the bond distances and the density at the BCP on one hand and between the bond distances and the Laplacian values at the BCP on the other hand. These correlations were almost independent of the basis set size. In this context, the linear regression has to be regarded exclusively as a descriptive statistics tool. There is no correlation anticipated a priori. The formal bond type was found to be readily deducible from the theoretically obtained bond topological descriptors of the model systems. In this sense, the bond topological properties are self consistent despite of the numerical sensitivity of the derivatives, as exemplified above. Often, calculations are performed with the experimentally derived equilibrium geometries and not with optimized ones. Applying this approach, the computationally costly geometry optimizations are saved. Following this approach the bond topological properties were calculated using very flexible basis sets and employing the fixed experimental geometry (which, of course, includes the application of tBu groups). Regression coe±cients similar to those from optimized geometries were obtained for correlations between bond distances and the densities at the BCP as well as for the correlation between bond distances and the Laplacian at the BCP, i.e. the approach is valid. However, the data points scattered less and the coe±cient of correlation was clearly increased when geometry optimizations were performed beforehand. The comparison between data obtained from theory and experiment revealed fundamental discrepancies: In the data set of bond topological parameters from the experiment, the behavior of only 2 out of 3 insensitive parameters was comparable to the behavior of the theoretically obtained values, i.e. theoretical and experimental bond distances as well as theoretical and experimental densities at the BCP correlate. From the theoretically obtained data it was easy to deduce the formal bond type from the position of the BCP, since it changed in a systematic manner. The respective experimentally obtained values were almost constant and did not change systematically. For the SN bonds containing compounds, the total second derivative assumes exclusively negative values in the experiment. Due to the different internal behavior, experimentally and theoretically sensitive bond topological values could not be compared directly. The qualitative agreement in the Laplacian distribution, however, was excellent. In the third and last part of this work, the application to chemical systems follows. Formal hypervalent molecules, i.e. molecules where some atoms are considered to hold more than 8 electrons in their valence shell, were investigated. These were compounds containing sulfur nitrogen bonds (H(NtBu)2SMe, H2C{S(NtBu)2(NHtBu)}2, S(NtBu)2 and S(NtBu)3) and a highly coordinated silicon compound. The set of sulfur nitrogen compounds also contained a textbook example for valence expansion, the sulfur triimide. For these molecules, experimental reference values were available from high resolution X-ray experiments. The experimental results were in the case of the sulfur triimide not unique. Furthermore, from the experimental bond topological data no definite conclusion about the formal bonding type could be drawn. The situation of sulfur nitrogen bonds in the above mentioned set of molecules was analyzed in terms of a geometry discussion and by means of a topological analysis. The methyl-substituted isolated molecules served as model compounds. For the interpretation of the bonding situation additional NBO/NRT calculations were preformed for the sulfur nitrogen compounds and an ELF calculation and analysis was performed for the silicon compound. The ELF analysis included not only the presentation and discussion of the ELF-isosurfaces (eta = 0.85), but also the investigation of populations of disynaptic valence basins and the percentage contributions to these populations of the individual atoms when the disynaptic valence basins are split into atomic contributions according to Bader’s partitioning scheme. The question of chemical interest was whether hypervalency is present in the set of molecules or not. In the first case the octet rule would be violated, in the second case Pauling’s verdict would be violated. While the concept of hypervalency is well established in chemistry, the violation of Pauling’s verdict is not. The quantitative numbers of the sensitive bond topological values from theory and experiment were not comparable, since no systematic relationship between the experimentally and theoretically determined sensitive bond descriptors was found. However, the insensitive parameters are in good agreement and the qualitative Laplacian distribution is, with few exceptions, in excellent agreement. The formal bonding type was deduced from experimental and theoretical topological data by considering the number and shape of valence shell charge concentrations in proximity to the sulfur and nitrogen centers. The results from NBO/NRT calculations confirmed the findings. All employed density analyzing tools AIM, ELF and NBO/NRT coincided in describing the bonding situation in the formally hypervalent molecules as highly polar. A comparison and analysis of experimentally and theoretically derived electron densities led consistently to the result, that regarding this set of molecules, hypervalency has to be excluded unequivocally. N2 - Zusammenfassung Die Natur der chemischen Bindung ist ein viel und häufig auch sehr kontrovers diskutiertes Thema. In der Chemie werden Moleküleigenschaften und Eigenschaften funktionaler Gruppen oft anhand von Lewis-Strukturen rationalisiert. Lewis-Strukturen bauen auf dem Valenzkonzept auf, welches besagt, dass man zwischen Elektronen unterscheiden kann, die an chemischen Reaktionen nicht teilnehmen (Kernelektronen) und solchen, die sich z.B. als bindende Elektronen oder als nicht-bindende Elektronen an chemischen Prozessen beteiligen. Zusätzlich ermöglicht das Valenzkonzept die Zuordnung individueller Elektronen zu einzelnen atomaren Zentren im Molekül. Das Valenzkonzept ist sehr erfolgreich und überaus praktisch. Es erlaubt die zuverlässige Planung von chemischen Synthesen und Analysen, mit ihm lässt sich das charakteristische Verhalten funktioneller Gruppen erkl¨ ären. Das Valenzkonzept stellt eine Sprache bereit, in der es sich sehr gut über Molekülstrukturen und chemische Wechselwirkungen nachdenken und kommunizieren lässt. Der überwältigende Erfolg des Valenzkonzepts kann irrtümlich dazu verleiten dessen approximativen Charakter zu vergessen. In der Quantenmechanik hingegen, die eine physikalische Grundlage aller chemischen Prozesse darstellt und die im Prinzip alle chemischen Phänomene quantitativ beschreiben kann, gibt es keine Unterscheidungsmöglichkeit der Elektronen. Im Gegensatz zum Valenzkonzept geht die Quantenmechanik von ununterscheidbaren Elektronen aus, die sich im Feld der Kerne bewegen. Das bedeutet, dass es quantenmechanisch unmöglich ist individuelle Elektronen einzelnen Zentren oder bestimmten Aufgaben zuzuordnen. Die Ununterscheidbarkeit von Mikroteilchen beruht letztendlich auf der Heisenbergschen Unschärferelation, die besagt, dass Wellenpakete in einem 6N-dimensionalen Phasenraum (3N Ortskoordinaten und 3N Impulskoordinaten von N Teilchen) auseinanderlaufen, so dass im Gegensatz zur klassischen Mechanik keine Teilchen anhand ihrer individuellen Bahnen verfolgt und identifiziert werden k¨onnen. Im einleitenden ersten Teil der vorliegenden Arbeit wurden Analysemethoden vorgestellt, die die Partitionierung einer Gesamtelektronendichte in chemisch relevante Bereiche erlauben. Sie sind eng verknüpft entweder mit dem Konzept des im Molekül gebundenen Atoms (Baders Atoms in Molecules, AIM und Hirshfelds Partitionierungsschema) oder mit dem Konzept der chemischen Struktur im Sinne von Lewis-Strukturen, in denen die Gesamtdichte in Kern- und Valenzdichte unterteilt ist und diese wiederum in Bindungselektronendichte und nicht-bindende Elektronendichte. Beispiele hierfür sind frühe und auch aktuelle "Loge" Theorien, die topologische Analyse der Electron Localization Function (ELF) und die Natural Bond Orbital (NBO) Analyse. Aus den vorgestellten Partitionierungsschemata wurden die Theorien von Bader (AIM), Becke und Edgecomb (ELF) und Weinhold (NBO und Natural Resonance Theory, NRT) detaillierter vorgestellt und Kritikpunkte erläutert. Da in der vorliegenden Arbeit berechnete Elektronendichten mit experimentell bestimmten Elektonendichten verglichen werden, wurde eine kurze Einführung in Röntgenbeugungsexperimente und in das Multipolmodell gegeben. Es folgte eine kurze Beschreibung der Dichteverfeinerung und einige Verbesserungsorschläge: Eine mögliche Strategie mit dem Ziel, Korrleationen zwischen den Modellparametern zu minimieren, ist die Verwendung von Modellparametern, die zu einem maximalen Grade wechselseitig orthogonal sind. Ein Beispiel hierfür sind die Radialfunktionen des Multipolmodells, die zu einem erheblichen Teil denselben Raumbereich beschreiben, da sie keine Knotenflächen aufweisen. Mit der Einführung von Knortenflächen werden Korrelationen zwischen einzelnen Multipolpopulationen und Skalierungsfaktoren, sowie zwischen Schwingungen beschreibenden Parametern und Parametern, die die statische Elektronendichteverteilung beschreiben verringert. Ein weiterer Vorschlag beruht auf der Anwendung eines Extremalprinzips. Dieses tritt in Kraft, wenn es zu dem Kleinst-Quadrate Minimierungsproblem verschiedene Lösungen gibt, die sich anhand ihrer statistischen Gütemaße und ihrer Residualdichten nicht wesentlich unterscheiden. Das Extremalprinzip besagt, dass diejenige Lösung zu bevorzugen ist, die die kleinsten Dichtewerte am bindungskritischen Punkt ausfweist und die zugleich am stärksten polar ist. Die Polarität der Bindung wird in diesem Zusammenhang durch das Verhältnis der Abstände vom bindungskritschen Punkt zu den Kernorten ausgedrückt. Dieser Vorschlag beruht auf der bekannten Tatsache, dass experimentelle Ergebnisse eine Tendenz zum Unterschätzen der Bindungspolarität aufweisen. Eine weitere Möglichkeit zur Berücksichtigung physikalischer Randbedingungen ist die explizite Einbindung des Virialtheorems, d.h., die Integration der zweiten Ortsableitung über das atomare Bassin und die Integration des Elektronendichtegradienten auf der das Bader-Atom begrenzenden Fläche müssen beide identisch verschwinden. Die Abweichung voneinander und vom Wert Null kann als internes Gütekriterium des Dichtemodells dienen. Ein weiterer Vorschlag involviert das elektrostatische Theorem von Feynman, das oft auch Hellmann-Feynman Theorem genannt wird. Es besagt, dass die elektrostatischen Kräfte, die auf die Kerne im Molekül wirken ganz einfach klassisch berechnet werden dürfen und für eine stabile Born-Oppenheimer-Konfiguration der Kerne identisch verschwinden. Hiermit ergibt sich eine einfache Möglichkeit, eine gegebene statische Kern- und Elektronendichteverteilung auf ihre physikalische Plausibilität hin zu untersuchen. Dies kann iterativ im Verfeinerungsprozess geschehen oder als Test des finalen Modells. Darüberhinaus darf man von der Verwendung des elektrostatischen Theorems eine weitgehende Entkopplung von dichte- und schwingungsbeschreibenden Parametern erwarten, da im elektrostatischen Theorem statische Gleichgewichtsverteilungen vorausgesetzt wurden. Weiterhin könnten als Startwerte für die experimentelle Verfeinerung Modellparameter verwendet werden, die schon so nah wie möglich an der Lösung des Kleinst-Quadrate Problems liegen. Das wird erreicht, indem mit Berechnungen, die periodische Randbedingungen berücksichtigen, ein h, k, l, I-File erzeugt wird (also Reflexindizierung und Intensitäten), welches als Grundlage einer konventionellen hochauflösenden Verfeinerung verwendet wird. Der Vorteil dieses Files ist, dass es weder von Schwingungen noch von Rauschen berührt wird. Die resultierenden Modellparameter werden dann zur Verfeinerung eines Modells aufgrund der experimentellen h, k, l, I-Daten verwendet, wobei im ersten Schritt nur schwingungsbeschreibende Terme verfeinert werden. Wenn das Ergebnis noch nicht zufriedenstellend ist, können die oben genannten Verbesserungsvorschläge zur Feinabstimmung herangezogen werden. Im zweiten Teil der Arbeit wurde im Rahmen einer Evaluierungstudie die Methoden-, Basissatz-, und Substituentenabhängigkeit ausgewählter Analysewerkzeuge in der Beschreibung komplexer chemischer Bindungen untersucht. Als Testsysteme dienten eine Reihe von Schwefel Sticksto®verbindungen mit formalen Einfach- und Doppelbindungen, die zudem inter- und intramolekulare Wasserstoffbrückenbindungen ausbilden. Für diese Testsysteme liegen experimentelle Vergleichswerte vor. Die berechneten Daten wurden sowohl miteinander als auch mit den experimentell bestimmten Werten verglichen. Der interne Vergleich wurde sowohl im Hinblick auf Konvergenz- als auch auf Konsistenzfragen gezogen. Die berechneten Eigenschaften aus der NBO/NRT Analyse sind für auf dem jeweiligen Berechnungsniveau optimierte Molekülgeometrien generell sehr stabil, sowohl was die Basissatz- als auch die Methodenabhängigkeit betrifft. Eine Ausnahme sind die Resonanzgewichte der natürlichen Lewis-Strukturen aus NRT Rechnungen. Die numerischen Werte der Resonanzstrukturen zeigten zum Teil erheblich unterschiedliche Werte. Die Schwankungen sind jedoch weitgehend innerhalb der Grenze, die eine Vertauschung in der Reihenfolge der führenden Gewichte ausschließt. Die Bindungseigenschaften, wie z.B. die totale, kovalente und ionische Bindungsordnung sind von den Gewichtungsunterschieden nicht betroffen. Die Analyse der bindungstopologischen Daten führte zu einer Unterscheidung zwischen stabilen und sensitiven Parametern. Die stabilen Parameter sind in erster Näherung methoden- und basissatzunempfindlich. Sie variieren wenig, wenn Basissätze und Rechenmethoden gewechselt werden oder wenn bei der Berechnung unterschiedliche Substituenten verwendet werden, solange die verwendeten Methoden ein Standard-Niveau nicht unterscheiden. Mit Bezug auf die verschiedenen Substituenten R = H, Me und R = tBu haben sich die die Schwefel Stickstoffbindungen beschreibenden Parameter als unempfindlich herausgestellt. Die stabilen Parameter sind die Bindungslänge, die Dichte am bindungskritischen Punkt und das Verh¨altnis der Abstände des bindungskritischen Punktes zu den Kernen A und B der Bindungspartner, welche auffällig mit dem formalen Bindungstyp korrelieren. Für sehr kleine Basissätze, wie z.B. den 3-21G Basissatz, ist die Stabilität der Abstandsverhältnisse nicht mehr gegeben. Die sensitiven Parameter beruhen auf der zweiten Ortsableitung. Dies ist im Einklang mit der Tatsache, dass die zweite Ortsableitung eine stark oszillierende Funktion ist, weswegen für die zweite Ortsableitung größere numerische Schwankungen zu erwarten sind. Der am stärksten veränderliche Parameter ist lambda3. Eine genaue Analyse ergab, dass die Sensitivität von lambda3 in formalen Doppelbindungen auf die Lage des bindungskritischen Punktes in einer steilen Flanke der zweiten Ortsableitung zurückzuführen ist. Da die Steigung des Laplacewertes in der Flanke sehr groß wird, genügt schon eine winzige Verschiebung des bindungskritischen Punktes, um erhebliche Veränderungen im Wert von lambda3 herbeizuführen. Diese Instabilität darf nicht zu Kritik an der Theorie führen, jedoch verursacht sie de facto eine erhebliche Methoden- und Basissatzabhängigkeit der sensitiven topologischen Parameter. Da innerhalb der AIM-Theorie das Vorzeichen des Laplacewertes am bindungskritischen Punkt über die Natur der chemischen Wechselwirkung entscheidet (“closed-shell interactions” versus “shared interactions”) kann diese Interpretation sich von einem Berechnungsniveau zum anderen unterscheiden. Der Vergleich bindungstopologischer Daten von unterschiedlichen Schwefel Stickstoffbindungen, bietet die Möglichkeit zur Überprüfung der Konsistenz des Datensatzes. Die Datensätze zeigen eine lineare Korrelation zwischen den Bindungslängen und der jeweiligen Dichte am bindungskritischen Punkt sowie zwischen den Bindungslängen und der totalen zweiten Ableitung am bindungskritischen Punkt, nahezu unabhängig von der Güte der verwendeten Basissätze. Die lineare Regression ist hierbei lediglich als einfachste Anwendung deskriptiver Statistik zu betrachten und beinhaltet keine Modellbildung. Die bindungstopologischen Daten aus den Modellrechnungen lassen im Allgemeinen auf den zugrundeliegenden formalen Bindungstyp schließen. Es wurde festgestellt, dass die bindungstopologischen Daten aus den Modellrechnungen in diesem Sinne konsistent sind, trotz der oben genannten numerischen Instabilitäten der zweiten Ortsableitungen. In der Fachliteratur wird oft von Rechnungen berichtet, die mit der festgehaltenen experimentellen Gleichgewichtsgeometrie durchgef¨uhrt wurden, woduch die aufwendige Geometrioptimierung umgangen werden kann. Dieser Annäherung folgend, wurden die bindungstopologischen Eigenschaften der Schwefel Stickstoffverbindungen unter Benutzung von sehr flexiblen Basissätzen und bei festgehaltener experimenteller Geometrie berechnet. Die Regressionskoeffizienten betreffend die Korrelation zwischen Bindungsabstand und Dichte am b indungskritischen Punkt (BCP) sowie zwischen Bindungsabstand und Laplacewert am BCP waren denen von optimierten Geometrien sehr ähnlich, was die oben eingeführte Näherung rechtfertigt. Allerdings waren die Korrelationskoe±zienten bei gleichem Basissatz und bei gleicher Rechenmethode im Fall von zuvor optimierten Geometrien deutlich erhöht. Der Vergleich der Theoriewerte mit den experimentell erhaltenen Daten zeigt wesentliche Unterschiede zwischen beiden auf: Von den 3 stabilen Parametern aus der Analyse der theoretisch bestimmten Bindungscharakteristika erscheinen nur 2 auch in den experimentellen Daten als stabil, d.h., die theoretischen und experimentellen Bindungsabstände sowie die theoretischen und experimentellen Dichten am bindungskritischen Punkt korrelieren jeweils miteinander. Aus den theoretischen Daten (Verhältnis der Bindungspfadlängen vom bindungskritischen Punkt zu den Kernen der Bindungspartner) ließ sich der formale Bindungstyp leicht erschließen, während die entsprechenden Werte in den experimentell erhaltenen Daten keinen Rückschluss auf den formalen Bindungstyp erlaubten, da sie sich nicht systematisch änderten. Die totale zweite Ortsableitung der Dichte nimmt in den experimentellen Daten der Schwefel Stickstoffverbindungen ausschließlich negative Werte an. Durch diesen Unterschied im internen Verhalten der sensitiven Parameter am BCP konnte kein systematischer Zusammenhang zwischen diesen experimentell und theoretisch erhaltenen Werten gefunden werden. Die qualitative Übereinstimmung in der Verteilung der Laplacewerte war jedoch exzellent. Im dritten Teil der vorliegenden Arbeit folgen die Anwendungen auf chemische Fragestellungen. Es wurden formal hypervalente Moleküle, d.h.Verbindungen, in welchen manche Atome formal von mehr als 8 Valenzelektronen umgeben sind, untersucht. Es handelt sich um eine Reihe von Schwefel Sticksto®verbindungen (H(NtBu)2SMe, H2C{S(NtBu)2(NHtBu)}2, S(NtBu)2 und S(NtBu)3) und um eine Siliziumverbindung mit 6-fach koordiniertem Si. Unter den untersuchten Schwefel Stickstoffverbindungen ist auch ein Lehrbuchbeispiel für Valenzaufweitung, das Schwefeltriimid. Für diese Verbindungen lagen experimentelle Daten aus einer hochauflösenden Multipolverfeinerung vor. Der experimentelle Befund war besonders im Hinblick auf das Schwefeltriimid nicht eindeutig. Weiterhin konnte, wie bereits oben erwähnt von den bindungstopologischen Daten nicht auf den zugrundeliegenden formalen Bindungstyp geschlossen werden. Die Bindungssituation der interessierenden Schwefel Stickstoffbindungen wurde zunächst anhand der Geometrie und dann aufgrund der topologischen Eigenschaften der Elektronendichte diskutiert. Die methylsubstituierten isolierten Moleküle dienten dabei als Modell. Zur Interpretation der SN Bindungssituation wurden zusätzlich NBO/NRT Berechnungen durchgeführt und für die hochkoordinierte Siliziumverbindung wurden zusätzlich ELF Berechnungen angewendet. Die ELF Analyse umfasste nicht nur die Berechnung und Darstellung von ELF-Isofl ächen (eta = 0.85), sondern auch die Berechnung und Aufteilung der Elektronenpopulation der disynaptischen Valenzbassins, wobei zur Aufteilung das Partitionierungsschema von Bader verwendet wurde. Die chemisch relevante Fragestellung war dabei ob bei den betrachteten Molekülen Hypervalenz vorliegt oder nicht. Im Falle vorliegender Hypervalenz wäre die Oktettregel verletzt, wenn keine Hypervalenz vorliegen würde müssten formale Ladungen eingeführt werden, was eine Verletzung des Verdiktes von Pauling darstellt. Wie oben beschrieben, konnten die empfindlichen bindungstopologischen Werte von Theorie und Experiment nicht direkt miteinander verglichen werden, da kein systematischer Zusammenhang zwischen ihnen zu bestehen scheint. Die unempfindlichen Parameter waren jedoch in guter Übereinstimmung und die qualitative Laplaceverteilung in den meisten Fällen exzellent. Der formale Bindungstyp wurde aus den experimentell und theoretisch zugänglichen Daten abgeleitet, indem die Anzahl und Lage der Valenzschalen-Ladungskonzentrationen (Valence shell charge concentrations, VSCC) in der Umgebung der Schwefel und Stickstoffkerne beschrieben und verglichen wurde. Die Berechnungen an den Modellsystemen bekräftigten den Befund. Alle Methoden, die zur Analyse der Dichte herangezogen wurden, namentlich die AIM Theorie, die ELF Analyse, die NBO und die NRT Berechnungen führten übereinstimmend zu dem Ergebnis, dass die betreffenenden Bindungen als zu einem hohen Grad polar zu beschreiben sind. Der Vergleich und die Analyse von theoretischen und experimentellen Dichten führte damit gleichermaßen zu dem Ergebnis, dass Hypervalenz in dem betrachteten Satz von Molekülen definitiv ausgeschlossen werden muss. KW - Elektronendichtebestimmung KW - Vergleich KW - Chemische Bindung KW - Theorie KW - Elektronendichte KW - topologische Analyse KW - Dichtebestimmung in Theorie und Experiment KW - Electron density KW - topological analysis KW - experimental and theoretical determination of electron density Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9003 ER - TY - JOUR A1 - Hegmann, Joachim A1 - Christl, Manfred A1 - Peters, Karl A1 - Peters, Eva-Maria A1 - Schnering, Hans Georg T1 - Conjugated and Nonconjugated Cyclopentenones by a Reaction Cascade from Methyl 6-0xo-5-phenyl-1,3,4-oxadiazine-2-carboxylate and 1,3-Butadienes N2 - No abstract available Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30207 ER - TY - JOUR A1 - Hecht, Markus A1 - Leowanawat, Pawaret A1 - Gerlach, Tabea A1 - Stepanenko, Vladimir A1 - Stolte, Matthias A1 - Lehmann, Matthias A1 - Würthner, Frank T1 - Self‐Sorting Supramolecular Polymerization: Helical and Lamellar Aggregates of Tetra‐Bay‐Acyloxy Perylene Bisimide JF - Angewandte Chemie International Edition N2 - A new perylene bisimide (PBI), with a fluorescence quantum yield up to unity, self‐assembles into two polymorphic supramolecular polymers. This PBI bears four solubilizing acyloxy substituents at the bay positions and is unsubstituted at the imide position, thereby allowing hydrogen‐bond‐directed self‐assembly in nonpolar solvents. The formation of the polymorphs is controlled by the cooling rate of hot monomer solutions. They show distinctive absorption profiles and morphologies and can be isolated in different polymorphic liquid‐crystalline states. The interchromophoric arrangement causing the spectral features was elucidated, revealing the formation of columnar and lamellar phases, which are formed by either homo‐ or heterochiral self‐assembly, respectively, of the atropoenantiomeric PBIs. Kinetic studies reveal a narcissistic self‐sorting process upon fast cooling, and that the transformation into the heterochiral (racemic) sheetlike self‐assemblies proceeds by dissociation via the monomeric state. KW - liquid crystals KW - noncovalent interactions KW - self-assembly KW - structure elucidation KW - supramolecular chemistry Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224586 VL - 59 IS - 39 SP - 17084 EP - 17090 ER - TY - THES A1 - Hecht, Markus T1 - Liquid-Crystalline Perylene Bisimide and Diketopyrrolopyrrole Assemblies T1 - Flüssigkristalline Perylenbisimid- und Diketopyrrolopyrrolstrukturen N2 - The research presented in this thesis illustrates that self-assembly of organic molecules guided by intermolecular forces is a versatile bottom-up approach towards functional materials. Through the specific design of the monomers, supramolecular architectures with distinct spatial arrangement of the individual building blocks can be realized. Particularly intriguing materials can be achieved when applying the supramolecular approach to molecules forming liquid-crystalline phases as these arrange in ordered, yet mobile structures. Therefore, they exhibit anisotropic properties on a macroscopic level. It is pivotal to precisely control the interchromophoric arrangement as functions originate in the complex structures that are formed upon self-assembly. Consequently, the aim of this thesis was the synthesis and characterization of liquid-crystalline phases with defined supramolecular arrangements as well as the investigation of the structure-property relationship. For this purpose, perylene bisimide and diketopyrrolopyrrole chromophores were used as they constitute ideal building blocks towards functional supramolecular materials due to their thermal stability, lightfastness, as well as excellent optical and electronic features desirable for the application in, e.g., organic electronics. N2 - Mithilfe von Gestaltungsprinzipien der supramolekularen Chemie können komplexe Strukturen realisiert werden, die mit Ansätzen der kovalenten Chemie nicht erreichbar sind. Ein zentraler Aspekt ist hierbei der systematische Aufbau der Monomereinheiten, welche unter geeigneten Bedingungen über intermolekulare Wechselwirkungen selbstassemblieren und Architekturen mit spezifischer räumlicher Anordnung der einzelnen Bauelemente formen. Flüssigkristalline Materialien zeigen zusätzlich zu positioneller und Orientierungsfernordnung der Moleküle, welche anisotrope Eigenschaften auf makroskopischer Ebene erzeugen, eine gewisse Mobilität. Daher können durch Kombination des supramolekularen Ansatzes mit Flüssigkristallen besonders interessante Materialien erzeugt werden. Da die spezische Anordnung der Moleküle die Funktion des selbstassemblierten Materials stark beeinflusst, ist es von großer Bedeutung, diese exakt kontrollieren zu können. Daher war es Ziel dieser Arbeit, flüssigkristalline Phasen mit einer definierten supramolekularen Struktur zu synthetisieren und zu charakterisieren. Weiterhin war es ein Ziel, diese auf ihre funktionellen Eigenschaften zu untersuchen, die aus der spezifischen Anordnung der Monomereinheiten hervorgehen. Für diesen Zweck wurden Perylenbisimid- und Diketopyrrolopyrrolfarbstoffe als Baueinheiten verwendet, da diese aufgrund ihrer Licht- und Hitzestabilität sowie exzellenten optischen und elektronischen Eigenschaften ideale Materialien für die Anwendung in der organischen Elektronik darstellen. KW - Selbstorganisation KW - Flüssigkristall KW - Perylenderivate KW - Perylene Bisimide KW - Liquid Crystal KW - J-Aggregates KW - Photoconductivity KW - Self-Assembly KW - Perylenbisimid Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216987 ER - TY - THES A1 - Hecht [geb. Wagener], Reinhard Johannes T1 - Processing and Characterization of Bulk Heterojunction Solar Cells Based on New Organic n-Type Semiconductors T1 - Prozessierung und Charakterisierung von Bulk-Heterojucktion Solarzellen auf Basis von neuen organischen n-Halbleitern N2 - This thesis established the fabrication of organic solar cells of DA dye donors and fullerene acceptors under ambient conditions in our laboratory, however, with reduced power conversion efficiencies compared to inert conditions. It was shown that moisture had the strongest impact on the stability and reproducibility of the solar cells. Therefore, utilization of robust materials, inverted device architectures and fast fabrication/characterization are recommended if processing takes place in air. Furthermore, the dyad concept was successfully explored in merocyanine dye-fullerene dyads and power conversion efficiencies of up to 1.14 % and 1.59 % were measured under ambient and inert conditions, respectively. It was determined that the major drawback in comparison to comparable BHJ devices was the inability of the dyad molecules to undergo phase separation. Finally, two series of small molecules were designed in order to obtain electron transport materials, using the acceptor-core-acceptor motive. By variation of the acceptor units especially the LUMO levels could be lowered effectively. Investigation of the compounds in organic thin film transistors helped to identify promising molecules with electron transport properties. Electron transport mobilities of up to 7.3 × 10−2 cm2 V−1 s−1 (ADA2b) and 1.39 × 10−2 cm2 V−1 s−1 (AπA1b) were measured in air for the ADA and AπA dyes, respectively. Investigation of selected molecules in organic solar cells proved that these molecules work as active layer components, even though power conversion efficiencies cannot compete with fullerene based devices yet. Thus, this thesis shows new possibilities that might help to develop and design small molecules as substitutes for fullerene acceptors. N2 - In dieser Arbeit wurde gezeigt, dass die Herstellung und Charakterisierung von organischen Solarzellen auf Basis von kleinen DA-Farbstoffen in Kombination mit Fullerenakzeptoren unter Umgebungsbedingungen möglich ist. Außerdem konnte herausgefunden werden, dass die Luftfeuchtigkeit den größten Einfluss auf die Stabilität und die Reproduzierbarkeit der organischen Solarzellen hat. Aus diesem Grund sind der Austausch labiler Komponenten, die Verwendung von invertierten Bauteilarchitekturen sowie eine zügige Herstellung und Charakterisierung bei Prozessierung an Luft zu empfehlen. In weiteren Experimenten konnte das Dyadenkonzept erfolgreich angewendet werden, sodass sich Effizienzen von 1.14 und 1.59 % unter ambienten bzw. inerten Bedingungen messen ließen. Das Unvermögen der Dyaden, separate Phasen aus Donor- und Akzeptorverbindung zu bilden, konnte als größte Schwäche der Verbindungen ausgemacht werden. Schlussendlich wurden zwei Serien von Molekülen mit der Absicht Elektronentransportmaterialien zu generieren basierend auf einem Akzeptor-Kern-Akzeptor-Strukturmotiv entworfen. Die Variation der Akzeptoren ermöglichte in der Tat eine systematische Absenkung der Grenzorbitale und insbesondere der LUMO-Niveaus. Weiterhin wurden die Verbindungen in organischen Dünnfilmtransistoren untersucht, um mehr über ihre Ladungstransporteigenschaften zu erfahren. Dabei konnten Moleküle ausgemacht werden, die zum Elektronentransport an Luft in der Lage sind. Für die besten ADA- und AπA-Farbstoffe konnten so jeweils Elektronenmobilitäten von 7.3 × 10−2 cm2 V–1 s–1 (ADA2b) und 1.39 × 10−2 cm2 V–1 s–1 (AπA1b) gemessen werden. Weitere Untersuchungen von ausgewählten Verbindungen in organischen Solarzellen, konnten beweisen, dass diese neu kreierten Moleküle im Prinzip als Aktivmaterialien funktionieren können, wenn auch die erzielten Effizienzen noch nicht mit denen von Fulleren-basierten Solarzellen konkurrieren konnten. Damit zeigt diese Arbeit neue Möglichkeiten auf, die bei der Entwicklung und dem Design von kleinen Molekülen als Alternativen zu Fullereneakzeptoren hilfreich sein können. KW - organic solar cells KW - A-D-A dyes KW - dyads KW - merocyanines KW - n-type semiconductors KW - Heterosolarzelle KW - Halbleiter KW - Merocyanine Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161385 ER - TY - JOUR A1 - He, Tao A1 - Wu, Yanfei A1 - D'Avino, Gabriele A1 - Schmidt, Elliot A1 - Stolte, Matthias A1 - Cornil, Jérôme A1 - Beljonne, David A1 - Ruden, P. Paul A1 - Würthner, Frank A1 - Frisbie, C. Daniel T1 - Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors JF - Nature Communications N2 - Understanding relationships between microstructure and electrical transport is an important goal for the materials science of organic semiconductors. Combining high-resolution surface potential mapping by scanning Kelvin probe microscopy (SKPM) with systematic field effect transport measurements, we show that step edges can trap electrons on the surfaces of single crystal organic semiconductors. n-type organic semiconductor crystals exhibiting positive step edge surface potentials display threshold voltages that increase and carrier mobilities that decrease with increasing step density, characteristic of trapping, whereas crystals that do not have positive step edge surface potentials do not have strongly step density dependent transport. A device model and microelectrostatics calculations suggest that trapping can be intrinsic to step edges for crystals of molecules with polar substituents. The results provide a unique example of a specific microstructure–charge trapping relationship and highlight the utility of surface potential imaging in combination with transport measurements as a productive strategy for uncovering microscopic structure–property relationships in organic semiconductors. KW - electronic and spintronic devices KW - electronic devices KW - scanning probe microscopy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227957 VL - 9 ER -