TY - INPR A1 - Braunschweig, Holger A1 - Krummenacher, Ivo A1 - Lichtenberg, Crispin A1 - Mattock, James A1 - Schäfer, Marius A1 - Schmidt, Uwe A1 - Schneider, Christoph A1 - Steffenhagen, Thomas A1 - Ullrich, Stefan A1 - Vargas, Alfredo T1 - Dibora[2]ferrocenophane: A Carbene-Stabilized Diborene in a Strained cis-Configuration T2 - Angewandte Chemie, International Edition N2 - Unsaturated bridges that link the two cyclopentadienyl ligands together in strained ansa metallocenes are rare and limited to carbon-carbon double bonds. The synthesis and isolation of a strained ferrocenophane containing an unsaturated two-boron bridge, isoelectronic with a C=C double bond, was achieved by reduction of a carbene-stabilized 1,1’-bis(dihaloboryl)ferrocene. A combination of spectroscopic and electrochemical measurements as well as density functional theory (DFT) calculations was used to assess the influence of the unprecedented strained cis configuration on the optical and electrochemical properties of the carbene-stabilized diborene unit. Initial reactivity studies show that the dibora[2]ferrocenophane is prone to boron-boron double bond cleavage reactions. KW - Boron KW - Metallocenes KW - Metallocene KW - Bor KW - Diborane KW - density functional calculations KW - strained molecules KW - diborenes Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141981 N1 - This is the pre-peer reviewed version of the following article: Angewandte Chemie, International Edition, Volume 56, Issue 3, 889–892, which has been published in final form at doi:10.1002/anie.201609601. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. ER - TY - JOUR A1 - Braunschweig, Holger A1 - Constantinidis, Philipp A1 - Dellermann, Theresa A1 - Ewing, William A1 - Fischer, Ingo A1 - Hess, Merlin A1 - Knight, Fergus A1 - Rempel, Anna A1 - Schneider, Christoph A1 - Ullrich, Stefan A1 - Vargas, Alfredo A1 - Woolins, Derek T1 - Highly Strained Heterocycles Constructed from Boron–Boron Multiple Bonds and Heavy Chalcogens JF - Angewandte Chemie, International Edition N2 - The reactions of a diborene with elemental selenium or tellurium are shown to afford a diboraselenirane or diboratellurirane, respectively. These reactions are reminiscent of the sequestration of subvalent oxygen and nitrogen in the formation of oxiranes and aziridines; however, such reactivity is not known between alkenes and the heavy chalcogens. Although carbon is too electronegative to affect the reduction of elements with lower relative electronegativity, the highly reducing nature of the B B double bond enables reactions with Se0 and Te0. The capacity of multiple bonds between boron atoms to donate electron density is highlighted in reactions where diborynes behave as nucleophiles, attacking one of the two Te atoms of diaryltellurides, forming salts consisting of diboratellurenium cations and aryltelluride anions. KW - Boron KW - Heterocycles KW - Multiple bonds KW - Selenium KW - Tellurium KW - Bor KW - Heterocyclische Verbindungen KW - Selen KW - Tellur Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138237 N1 - This is the peer reviewed version of the following article: Angew. Chem. Int. Ed. 2016, 55, 5606–5609, which has been published in final form at 10.1002/anie.201601691. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. N1 - Accepted Version VL - 55 IS - 18 SP - 5606 EP - 5609 ER - TY - JOUR A1 - Braunschweig, Holger A1 - Ewing, William C. A1 - Ghosh, Sundargopal A1 - Kramer, Thomas A1 - Mattock, James D. A1 - Östreicher, Sebastian A1 - Vargas, Alfredo A1 - Werner, Christine T1 - Trimetallaborides as starting points for the syntheses of large metal-rich molecular borides and clusters JF - Chemical Science N2 - Treatment of an anionic dimanganaborylene complex ([{Cp(CO)\(_2\)Mn}\(_2\)B]\(^-\)) with coinage metal cations stabilized by a very weakly coordinating Lewis base (SMe\(_2\)) led to the coordination of the incoming metal and subsequent displacement of dimethylsulfide in the formation of hexametalladiborides featuring planar four-membered M\(_2\)B\(_2\) cores (M = Cu, Au) comparable to transition metal clusters constructed around four-membered rings composed solely of coinage metals. The analogies between compounds consisting of B\(_2\)M\(_2\) units and M\(_4\) (M = Cu, Au) units speak to the often overlooked metalloid nature of boron. Treatment of one of these compounds (M = Cu) with a Lewis-basic metal fragment (Pt(PCy\(_3\))\(_2\)) led to the formation of a tetrametallaboride featuring two manganese, one copper and one platinum atom, all bound to boron in a geometry not yet seen for this kind of compound. Computational examination suggests that this geometry is the result of d\(^{10}\)-d\(^{10}\) dispersion interactions between the copper and platinum fragments. KW - anionic dimetalloborylene complexes KW - trimetallaborides KW - tetrametallaborides KW - Boron KW - metallaboranes KW - crystal structure KW - metal borylene complexes Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191511 VL - 7 IS - 1 ER -