TY - THES A1 - Audretsch, Christof T1 - Analysing Quorum Sensing and Biofilm formation in Staphylococcus aureus T1 - Untersuchungen des Quorum-Sensing und der Biofilm-Bildung in Staphylokokkus aureus N2 - Staphylococcus aureus (SA) causes nosocomial infections including life threatening sepsis by multi-resistant strains (MRSA). It has the ability to form biofilms to protect it from the host immune system and from anti staphylococcal drugs. Biofilm and planctonic life style is regulated by a complex Quorum-Sensing (QS) system with agr as a central regulator. To study biofilm formation and QS mechanisms in SA a Boolean network was build (94 nodes, 184 edges) including two different component systems such as agr, sae and arl. Important proteins such as Sar, Rot and SigB were included as further nodes in the model. System analysis showed there are only two stable states biofilm forming versus planctonic with clearly different subnetworks turned on. Validation according to gene expression data confirmed this. Network consistency was tested first according to previous knowledge and literature. Furthermore, the predicted node activity of different in silico knock-out strains agreed well with corresponding micro array experiments and data sets. Additional validation included the expression of further nodes (Northern blots) and biofilm production compared in different knock-out strains in biofilm adherence assays. The model faithfully reproduces the behaviour of QS signalling mutants. The integrated model allows also prediction of various other network mutations and is supported by experimental data from different strains. Furthermore, the well connected hub proteins elucidate how integration of different inputs is achieved by the QS network. For in silico as well as in vitro experiments it was found that the sae-locus is also a central modulator of biofilm production. Sae knock-out strains showed stronger biofilms. Wild type phenotype was rescued by sae complementation. To elucidate the way in which sae takes influence on biofilm formation the network was used and Venn-diagrams were made, revealing nodes regulated by sae and changed in biofilms. In these Venn-diagrams nucleases and extracellular proteins were found to be promising nodes. The network revealed DNAse to be of great importance. Therefore qualitatively the DNAse amount, produced by different SA mutants was measured, it was tried to dissolve biofilms with according amounts of DNAse and the concentration of nucleic acids, proteins and polysaccharides were measured in biofilms of different SA mutants. With its thorough validation the network model provides a powerful tool to study QS and biofilm formation in SA, including successful predictions for different knock-out mutant behaviour, QS signalling and biofilm formation. This includes implications for the behaviour of MRSA strains and mutants. Key regulatory mutation combinations (agr–, sae–, sae–/agr–, sigB+, sigB+/sae–) were directly tested in the model but also in experiments. High connectivity was a good guide to identify master regulators, whose detailed behaviour was studied both in vitro and in the model. Together, both lines of evidence support in particular a refined regulatory role for sae and agr with involvement in biofilm repression and/or SA dissemination. With examination of the composition of different mutant biofilms as well as with the examination of the reaction cascade that connects sae to the biofilm forming ability of SA and also by postulating that nucleases might play an important role in that, first steps were taken in proving and explaining regulatory links leading from sae to biofilms. Furthermore differences in biofilms of different mutant SA strains were found leading us in perspective towards a new understanding of biofilms including knowledge how to better regulate, fight and use its different properties. N2 - Staphylococcus aureus (SA) ist Auslöser nosocomialer Infektionen, darunter auch die, durch multiresistente Stämme (MRSA) verursachte, lebensbedrohliche Sepsis. Er hat die Fähigkeit Biofilme zu bilden, um sich vor dem Immunsystem des Wirtes und vor Antibiotika zu schützen. Biofilm und planktonische Lebensweise werden durch ein komplexes Quorum-Sensing (QS) System mit agr als zentralem Regulator gesteuert. Um die Biofilm Bildung und QS Mechanismen in SA zu untersuchen, wurde ein Boole´sches Netzwerk erstellt (94 Knoten, 184 Kanten) das verschiedene Zwei-Komponenten-Systeme wie agr, sae und arl mit einschließt. Wichtige Proteine wie Sar, Rot und SigB wurden als weitere Knoten im Modell eingefügt. Die Systemanalyse zeigte, dass es nur zwei stabile Zustände gibt, Biofilm bildend versus planktonisch, in denen deutlich unterschiedliche Subnetzwerke angeschaltet sind. Überprüfungen anhand von Gen-Expressions-Daten bestätigten dies. Die Netzwerkstabilität wurde zuerst an Hand von bestehendem Wissen und Literatur getestet. Zudem stimmte die vorhergesagte Aktivität der Knoten in verschiedenen in silico Knock-out Stämmen sehr gut mit den zugehörigen Micro-array Experimenten und Daten überein. Zusätzliche Validierungen schlossen die Expression weiterer Knoten (Northern Blots) und die Biofilm Produktion, verglichen durch Biofilm adherence assays, in verschiedenen Knock-out Stämmen mit ein. Das Modell spiegelt zuverlässig das Verhalten von QS-Signal Mutanten wieder. Das integrierte Modell erlaubt auch Vorhersagen von diversen anderen Netzwerk Mutationen und wird durch experimentelle Daten unterschiedlicher Stämme gestützt. Außerdem zeigen die gut vernetzten Hubproteine im Detail auf, wie die Verarbeitung unterschiedlicher Eingangssignale durch das QS-Netzwerk erreicht wird. Sowohl für in silico als auch für in vitro Experimente konnte gezeigt werden, dass der sae-Locus auch einen zentralen Modulator der Biofilm Produktion darstellt, sae Knock-out Stämme zeigten stärkere Biofilme. Der Wildtyp Phänotyp wurde durch sae Komplementierung wiederhergestellt. Um die Art und Weise, mit der sae Einfluss auf die Biofilm Bildung nimmt, aufzuklären wurde das Netzwerk genutzt und Venn-Diagramme angefertigt, welche Knoten aufzeigten, die durch sae reguliert- und in Biofilmen verändert sind. In den Venn-Diagrammen wurden Nucleasen und extrazelluläre Proteine als vielversprechende Knoten gefunden. Das Netzwerk zeigte, dass DNAse von großer Bedeutung ist. Deswegen wurde qualitativ die, durch unterschiedliche SA Mutanten produzierte, DNAse-Menge gemessen, es wurde versucht den Biofilm mit vergleichbaren DNAse-Mengen aufzulösen und die Konzentration von Nukleinsäuren, Proteinen und Polysacchariden wurde in Biofilmen unterschiedlicher SA Mutanten gemessen. Aufgrund seiner sorgfältigen Überprüfung stellt das Netzwerk-Modell ein mächtiges Werkzeug zur Untersuchung von QS und Biofilm Bildung in SA dar, erfolgreiche Vorhersagen über das Verhalten unterschiedlicher Knock-out Mutanten, QS Signale und Biofilm Bildung eingeschlossen. Dies beinhaltet Prognosen für das Verhalten von MRSA Stämmen und Mutanten. Zentrale regulatorische Mutationskombinationen (agr–, sae–, sae–/agr–, sigB+, sigB+/sae–) wurden direkt im Model aber auch in Experimenten getestet. Hohe Konektivität war ein guter Anhaltspunkt, um Hauptregulatoren zu identifizieren, deren Verhalten in vitro und im Modell untersucht wurde. Zusammen unterstützen beide Beweisführungen im Besonderen eine präzise regulatorische Rolle von sae und agr in Bezug auf Biofilm Unterdrückung und/oder SA Ausbreitung. Mit der Untersuchung der Zusammensetzung von Biofilmen unterschiedlicher Mutanten, ebenso wie mit der Untersuchung der Reaktionskaskade die sae mit der Biofilm Bildungsfähigkeit von SA verbindet und auch dem Überprüfen der Annahme, dass Nukleasen eine bedeutende Rolle hierin spielen könnten, wurden erste Schritte unternommen, um regulatoische Interaktionen zwischen sae und Biofilmen zu belegen und zu untersuchen. Des Weiteren wurden Unterschiede in Biofilmen verschiedener mutierter SA Stämme gefunden, die uns voraussichtlich zu einem neuem Verständnis von Biofilmen und damit zu Wissen führen, wie ihre Eigenschaften reguliert, bekämpft und genutzt werden können. KW - Staphylococcus aureus KW - Biofilm KW - Simulation KW - Staphylococcus aureus KW - Quorum-Sensing KW - Simulation KW - Biofilm KW - sae KW - agr KW - sar KW - DNAse Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-92189 ER - TY - THES A1 - Stegmann, Martin T1 - Identification of PUB22 Targets and Functional Characterization in PAMP-Triggered Immunity T1 - Identifizierung von PUB22 Zielproteinen und deren funktionelle Charakterisierung in der PAMP-vermittelten Immunantwort N2 - The three closely related PUB proteins PUB22, PUB23 and PUB24 were described as important regulators for PTI signaling and plant immunity. To find cellular targets regulated by the action of the PUB triplet we performed a yeast two-hybrid screen to identify candidate target proteins of PUB22. We could identify Exo70B2 as a target protein of PUB22, which is ubiquitinated by the E3-ubiquitin ligase and consequently degraded in response to flg22 perception. The importance of Exo70B2 for immunity was shown by reverse genetics, demonstrating that exo70B2 mutants are impaired in PTI signaling and plant immunity. Exo70B2 is one of 23 homologs of the yeast Exo70p in Arabidopsis thaliana, which is a subunit of an octameric protein complex, termed the exocyst. The exocyst complex is required for the tethering of post-Golgi vesicles to specific target membranes and thus an important component of intracellular vesicle trafficking. The elucidated function of Exo70B2 and its requirement for PTI signaling is a novel finding and similar functions had not yet been described for the exocyst complex or subunits thereof in plants. Additional target proteins of PUB22 are also predicted to be involved in vesicle trafficking processes, suggesting that PUB22 has specialized to regulate trafficking protein complexes required for PTI signaling. Furthermore, the presented work suggests a mechanism for the regulation of Exo70B2 ubiquitination by PUB22. PUB22 was shown to be intrinsically instable due to its autocatalytic ubiquitination activity. Flg22 treatment induced the rapid post-translational stabilization of PUB22. This potentially enables the ligase to efficiently interact with Exo70B2, resulting in its polyubiquitination and 26S-proteasome-dependent turnover. N2 - Die drei E3-Ubiquitin-Ligasen vom Pflanzen U-box Typ (PUB), PUB22, PUB23 und PUB24, wurden als wichtige Regulatoren der Pathogen-assozierten Molekülmuster (PAMP)-vermittelten Signaltransduktion und der damit verbundenen pflanzlichen Immunantwort beschrieben. Es wurde ein Hefe Zwei-Hybridscreen mit PUB22 durchgeführt, um die zellulären Vorgänge besser zu verstehen, welche durch die drei PUB Proteine reguliert werden. Mit Hilfe des Screens konnte Exo70B2 als ein Zielprotein von PUB22 identifiziert werden. Exo70B2 wird von PUB22 ubiquitiniert und nach Erkennung von flg22 durch das 26S-Proteasom abgebaut. In weiterführenden Experimenten konnte die Bedeutung von Exo70B2 für die pflanzliche Abwehrreaktion gezeigt werden. Mutanten von exo70B2 zeigten verminderte PAMP-vermittelte Signaltransduktion und eine beeinträchtigte Immunreaktion. Exo70B2 ist eines von 23 Arabidopsis Homologen des Exo70p Proteins aus Hefe. Exo70p ist eine Untereinheit des oktameren Exozystkomplexes, welcher für das Andocken von post-Golgi Vesikeln an spezifischen Zielmembranen benötigt wird. Der Exozystkomplex stellt demnach eine wichtige Komponente des intrazellulären Vesikeltransports dar. Die aufgeklärte Funktion von Exo70B2 und seine Bedeutung für die PAMP-vermittelte Signaltransduktion wurde bisher noch nicht für den Exozystkomplex oder einzelner seiner Untereinheiten im pflanzlichen System beschrieben. Demnach tragen die Ergebnisse dieser Arbeit zur Erkenntnis neuer Funktionen des Exozystkomplexes der Pflanze bei. Zusätzliche Zielproteine von PUB22 werden ebenfalls mit der Beteiligung an intrazellulären Vesikeltransportprozessen in Verbindung gebracht. Dies legt die Vermutung nahe, dass sich PUB22 auf die Regulation von Vesikeltransportprozessen spezialisiert hat, die für die PAMP-vermittelte Signalübertragung benötigt werden. Des Weiteren schlagen die Ergebnisse der vorliegenden Arbeit einen Regulationsmechanismus für die PUB22-vermittelte Exo70B2-Ubiquitinierung vor. Es konnte gezeigt werden, dass PUB22 intrinsisch instabil ist, was auf seine autokatalytische Ubiquitinierungsaktivität zurückzuführen ist. Nach Behandlung mit flg22 konnte eine rapide posttranslationale Stabilisierung von PUB22 beobachtet werden. Dies erlaubt möglicherweise die Interaktion mit Exo70B2, was zur Polyubiquitinierung und zum 26S-Proteasom-vermittelten Abbau des Zielproteins führt. KW - Ubiquitinligase KW - Exozytose KW - PTI signalling KW - vesicle trafficking KW - plant immunity Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-92061 ER -