TY - THES A1 - Löw, Fabian T1 - Agricultural crop mapping from multi-scale remote sensing data - Concepts and applications in heterogeneous Middle Asian agricultural landscapes T1 - Kartierung von Agrarflächen mit multiskaligen Fernerkundungsdaten - Konzepte und Anwendung in heterogenen Agrarlandschaften Mittelasiens N2 - Agriculture is mankind’s primary source of food production and plays the key role for cereal supply to humanity. One of the future challenges will be to feed a constantly growing population, which is expected to reach more than nine billion by 2050. The potential to expand cropland is limited, and enhancing agricultural production efficiency is one important means to meet the future food demand. Hence, there is an increasing demand for dependable, accurate and comprehensive agricultural intelligence on crop production. The value of satellite earth observation (EO) data for agricultural monitoring is well recognized. One fundamental requirement for agricultural monitoring is routinely updated information on crop acreage and the spatial distribution of crops. With the technical advancement of satellite sensor systems, imagery with higher temporal and finer spatial resolution became available. The classification of such multi-temporal data sets is an effective and accurate means to produce crop maps, but methods must be developed that can handle such large and complex data sets. Furthermore, to properly use satellite EO for agricultural production monitoring a high temporal revisit frequency over vast geographic areas is often necessary. However, this often limits the spatial resolution that can be used. The challenge of discriminating pixels that correspond to a particular crop type, a prerequisite for crop specific agricultural monitoring, remains daunting when the signal encoded in pixels stems from several land uses (mixed pixels), e.g. over heterogeneous landscapes where individual fields are often smaller than individual pixels. The main purposes of the presented study were (i) to assess the influence of input dimensionality and feature selection on classification accuracy and uncertainty in object-based crop classification, (ii) to evaluate if combining classifier algorithms can improve the quality of crop maps (e.g. classification accuracy), (iii) to assess the spatial resolution requirements for crop identification via image classification. Reporting on the map quality is traditionally done with measures that stem from the confusion matrix based on the hard classification result. Yet, these measures do not consider the spatial variation of errors in maps. Measures of classification uncertainty can be used for this purpose, but they have attained only little attention in remote sensing studies. Classifier algorithms like the support vector machine (SVM) can estimate class memberships (the so called soft output) for each classified pixel or object. Based on these estimations, measures of classification uncertainty can be calculated, but it has not been analysed in detail, yet, if these are reliable in predicting the spatial distribution of errors in maps. In this study, SVM was applied for the classification of agricultural crops in irrigated landscapes in Middle Asia at the object-level. Five different categories of features were calculated from RapidEye time series data as classification input. The reliability of classification uncertainty measures like entropy, derived from the soft output of SVM, with regard to predicting the spatial distribution of error was evaluated. Further, the impact of the type and dimensionality of the input data on classification uncertainty was analysed. The results revealed that SMVs applied to the five feature categories separately performed different in classifying different types of crops. Incorporating all five categories of features by concatenating them into one stacked vector did not lead to an increase in accuracy, and partly reduced the model performance most obviously because of the Hughes phenomena. Yet, applying the random forest (RF) algorithm to select a subset of features led to an increase of classification accuracy of the SVM. The feature group with red edge-based indices was the most important for general crop classification, and the red edge NDVI had an outstanding importance for classifying crops. Two measures of uncertainty were calculated based on the soft output from SVM: maximum a-posteriori probability and alpha quadratic entropy. Irrespective of the measure used, the results indicate a decline in classification uncertainty when a dimensionality reduction was performed. The two uncertainty measures were found to be reliable indicators to predict errors in maps. Correctly classified test cases were associated with low uncertainty, whilst incorrectly test cases tended to be associated with higher uncertainty. The issue of combining the results of different classifier algorithms in order to increase classification accuracy was addressed. First, the SVM was compared with two other non-parametric classifier algorithms: multilayer perceptron neural network (MLP) and RF. Despite their comparatively high classification performance, each of the tested classifier algorithms tended to make errors in different parts of the input space, e.g. performed different in classifying crops. Hence, a combination of the complementary outputs was envisaged. To this end, a classifier combination scheme was proposed, which is based on existing algebraic operators. It combines the outputs of different classifier algorithms at the per-case (e.g. pixel or object) basis. The per-case class membership estimations of each classifier algorithm were compared, and the reliability of each classifier algorithm with respect to classifying a specific crop class was assessed based on the confusion matrix. In doing so, less reliable classifier algorithms were excluded at the per-class basis before the final combination. Emphasis was put on evaluating the selected classification algorithms under limiting conditions by applying them to small input datasets and to reduced training sample sets, respectively. Further, the applicability to datasets from another year was demonstrated to assess temporal transferability. Although the single classifier algorithms performed well in all test sites, the classifier combination scheme provided consistently higher classification accuracies over all test sites and in different years, respectively. This makes this approach distinct from the single classifier algorithms, which performed different and showed a higher variability in class-wise accuracies. Further, the proposed classifier combination scheme performed better when using small training set sizes or when applied to small input datasets, respectively. A framework was proposed to quantitatively define pixel size requirements for crop identification via image classification. That framework is based on simulating how agricultural landscapes, and more specifically the fields covered by one crop of interest, are seen by instruments with increasingly coarser resolving power. The concept of crop specific pixel purity, defined as the degree of homogeneity of the signal encoded in a pixel with respect to the target crop type, is used to analyse how mixed the pixels can be (as they become coarser) without undermining their capacity to describe the desired surface properties (e.g. to distinguish crop classes via supervised or unsupervised image classification). This tool can be modulated using different parameterizations to explore trade-offs between pixel size and pixel purity when addressing the question of crop identification. Inputs to the experiments were eight multi-temporal images from the RapidEye sensor. Simulated pixel sizes ranged from 13 m to 747.5 m, in increments of 6.5 m. Constraining parameters for crop identification were defined by setting thresholds for classification accuracy and uncertainty. Results over irrigated agricultural landscapes in Middle Asia demonstrate that the task of finding the optimum pixel size did not have a “one-size-fits-all” solution. The resulting values for pixel size and purity that were suitable for crop identification proved to be specific to a given landscape, and for each crop they differed across different landscapes. Over the same time series, different crops were not identifiable simultaneously in the season and these requirements further changed over the years, reflecting the different agro-ecological conditions the investigated crops were growing in. Results further indicate that map quality (e.g. classification accuracy) was not homogeneously distributed in a landscape, but that it depended on the spatial structures and the pixel size, respectively. The proposed framework is generic and can be applied to any agricultural landscape, thereby potentially serving to guide recommendations for designing dedicated EO missions that can satisfy the requirements in terms of pixel size to identify and discriminate crop types. Regarding the operationalization of EO-based techniques for agricultural monitoring and its application to a broader range of agricultural landscapes, it can be noted that, despite the high performance of existing methods (e.g. classifier algorithms), transferability and stability of such methods remain one important research issue. This means that methods developed and tested in one place might not necessarily be portable to another place or over several years, respectively. Specifically in Middle Asia, which was selected as study region in this thesis, classifier combination makes sense due to its easy implementation and because it enhanced classification accuracy for classes with insufficient training samples. This observation makes it interesting for operational contexts and when field reference data availability is limited. Similar to the transferability of methods, the application of only one certain kind of EO data (e.g. with one specific pixel size) over different landscapes needs to be revisited and the synergistic use of multi-scale data, e.g. combining remote sensing imagery of both fine and coarse spatial resolution, should be fostered. The necessity to predict and control the effects of spatial and temporal scale on crop classification is recognized here as a major goal to achieve in EO-based agricultural monitoring. N2 - Landwirtschaftlicher Ackerbau spielt heute eine Schlüsselrolle bei der Nahrungsmittelversorgung der Menschheit. Eine der zukünftigen Herausforderungen wird die Ernährung der stetig wachsenden Erdbevölkerung sein, welche bis zum Jahr 2050 auf neun Milliarden Menschen anwachsen wird. Das Potential zur Ausdehnung von Ackerland ist jedoch begrenzt, so dass die Steigerung der landwirtschaftlichen Produktionseffizienz ein wichtiges Mittel ist, um den künftigen Nahrungsmittelbedarf zu decken. Daher gibt es einen zunehmenden Bedarf an belastbaren, genauen und umfassenden Informationen über die Agrarproduktion. Der Nutzen der Satellitenbild-Fernerkundung ist in diesem Kontext mittlerweile anerkannt. Eine wichtige Voraussetzung für das Agrarmonitoring sind aktuelle Informationen über die Fläche sowie die räumliche Verteilung von Anbaukulturen. Durch die technologische Entwicklung steht heute eine Vielfalt an Satellitenbildsystemen mit immer höherer räumlicher und zeitlicher Auflösung zur Verfügung. Die Klassifikation solcher hochaufgelösten, multi-temporalen Datensätze stellt eine bewährte Methode dar, um Karten der agrarischen Landnutzung zu erstellen und die benötigten Informationen zu erhalten. Jedoch müssen die dabei verwendeten Methoden auf die sehr komplexen Eingangsdaten anwendbar sein. Zudem benötigt man zur Modellierung der Agrarproduktion oft eine hohe Aufnahmefrequenz bei gleichzeitig großer räumlicher Abdeckung. Diese Voraussetzungen schränken jedoch aus technischen Gründen oftmals die zur Verfügung stehenden Pixelgrößen ein, da Sensoren, welche diese Voraussetzungen erfüllen, in der Regel eine gröbere räumliche Auflösung haben. Die Unterscheidung von Pixeln unterschiedlicher Landnutzung als eine Voraussetzung für feldfrucht-spezifisches Agrarmonitoring kann dann erschwert sein, wenn Satellitenbilder über heterogenen Landschaften aufgezeichnet werden. In solchen Fällen kann das im Pixel kodierte Signal von mehreren Nutzungstypen stammen (Mischpixel), was zur Zunahme von Klassifikationsfehlern führen kann. Hauptgegenstände dieser Studie sind: (i) die Untersuchung des Einflusses der Größe sowie der Art der Eingangsdaten auf die Klassifikationsgenauigkeit und die Klassifikationsunsicherheit in der objekt-basierten Landnutzungsklassifikation; (ii) die Kombination von Klassifikationsalgorithmen zur Steigerung der Klassifikationsgenauigkeit; (iii) die Untersuchung des Einflusses der Pixelgröße auf die agrarische Landnutzungsklassifikation. Die Genauigkeit einer Klassifikation wird im Allgemeinen mit Hilfe von Gütemaßen ermittelt, welche auf der Konfusionsmatrix basieren. Jedoch berücksichtigen diese Maße nicht die räumliche Variabilität von Klassifikationsfehlern in einer Karte. Maße der Klassifikationsunsicherheit können für diesen Zweck verwendet werden, allerdings ist deren Anwendung in der Fernerkundung bislang nur selten untersucht worden. Klassifikationsalgorithmen wie das Stützvektorverfahren können für jedes Pixel oder Objekt klassenweise Abschätzungen der Klassenzugehörigkeit berechnen, aus welchen dann Maße der Klassifikationsunsicherheit (z.B. Entropie) berechnet werden können. Jedoch wurde noch nicht hinreichend untersucht, ob die damit gewonnenen Informationen zur Abschätzung der räumlichen Verteilung von Klassifikationsfehlern in Karten zuverlässig sind. In dieser Studie wurde das Stützvektorverfahren verwendet, um die agrarische Landnutzung in bewässerten Agrarlandschaften Zentralasiens zu klassifizieren. Fünf Kategorien von Eingangsdaten wurden aus Aufnahmen des RapidEye Systems berechnet und als Grundlage für die agrarische Landnutzungsklassifikation verwendet. Es wurde untersucht, ob Maße der Klassifikationsunsicherheit, welche auf den pixel- bzw. objektweisen Abschätzungen der Klassenzugehörigkeit durch das Stützvektorverfahren basieren, die räumliche Verteilung von Klassifikationsfehlern in Landnutzungskarten zuverlässig schätzen können. Weiterhin wurde der Einfluss sowohl der Art als auch der Größe der Eingangsdaten auf die Klassifikationsunsicherheit untersucht. Die Ergebnisse der Untersuchung weisen darauf hin, dass sich sowohl die getrennte als auch die kombinierte Verwendung der fünf Eingangsdatenkategorien unterschiedlich zur Klassifikation verschiedener Landnutzungsklassen eignen. Die kombinierte Verwendung aller fünf Kategorien führte zum Teil zu einer Reduktion der Klassifikationsgenauigkeit, was wahrscheinlich auf das Hughes-Phänomen zurückzuführen ist. Durch die Verwendung des „Random Forest“ Verfahrens zur Selektion geeigneter Eingangsdaten konnte die Klassifikationsgenauigkeit des Stützvektorverfahrens gesteigert werden. Eingangsdaten basierend auf dem sogenannten „Red Edge“ Kanal des RapidEye Systems waren zur Klassifikation von Feldfrüchten am wichtigsten, insbesondere der „Red Edge NDVI“. Zwei Maße der Klassifikationsunsicherheit wurden berechnet: die maximale a-posteriori Klassifikationswahrscheinlichkeit und die Alpha-Quadrat Entropie. Die Ergebnisse weisen darauf hin, dass diese beiden Maße verlässliche Prädiktoren für die räumliche Verteilung von Klassifikationsfehlern sind. Korrekt klassifizierte Testfelder waren durch geringe Klassifikationsunsicherheit und inkorrekt klassifizierte Testfelder in der Regel durch hohe Klassifikationsunsicherheit charakterisiert. Es wurde untersucht, ob die Kombination mehrerer Klassifikationsalgorithmen zu einer Steigerung der Klassifikationsgenauigkeit führt. Zunächst wurde das Stützvektorverfahren mit anderen nicht-parametrischen Verfahren (neuronalen Netzwerken und Random Forest) verglichen. Obwohl die getesteten Klassifikationsalgorithmen gute Gesamt-Klassifikationsgenauigkeiten erzielten, bestanden große Unterschiede in den klassenweisen Genauigkeiten. Daher wurde ein Verfahren entwickelt, um die teilweise komplementären Ergebnisse unterschiedlicher Klassifikationsalgorithmen zu kombinieren. Dieses Verfahren basiert auf der Erweiterung algebraischer Kombinationsoperatoren und kombiniert die Ergebnisse verschiedener Klassifikationsalgorithmen basierend auf den pixel- bzw. objektweisen Abschätzungen der Klassenzugehörigkeit. Zudem wurde jeder Klassifikationsalgorithmus klassenweise bewertet, basierend auf Maßen der Konfusionsmatrix. So konnten Klassifikationsalgorithmen für diejenigen Klassen von der Kombination ausgeschlossen werden, für deren klassenweisen Genauigkeiten bestimmte Kriterien nicht erfüllt wurden. Das vorgestellte Verfahren wurde mit den Ergebnissen der einzelnen Klassifikationsalgorithmen verglichen. Zudem wurde auf räumliche und zeitliche Übertragbarkeit hin getestet und der Einfluss der Auswahl von Trainingsdaten wurde untersucht. Obwohl die einzelnen Klassifikationsalgorithmen genaue Ergebnisse erzielten, konnte das vorgestellte Kombinationsverfahren in allen Gebieten und über mehrere Jahre bessere Ergebnisse mit geringerer Variabilität erzielen. Zudem konnte das Verfahren auch dann genauere Ergebnisse liefern, wenn nur wenige Trainingsdaten oder Eingangsdaten zur Verfügung standen. In dieser Studie wurde eine Methodik entwickelt, um quantitativ die maximal tolerierbaren Pixelgrößen für die agrarische Landnutzungsklassifikation zu bestimmen. Diese Methodik kann verwendet werden, um den kombinierten Effekt von Pixelgröße und Pixelreinheit im Kontext der Feldfruchtidentifikation mittels überwachter Klassifikation zu untersuchen. Die feldfruchtspezifische Pixelreinheit (definiert als der Grad der Homogenität des in Pixeln kodierten Signals) wurde verwendet um zu untersuchen, wie inhomogen die in gröberen Bildpixeln gespeicherte Information sein darf, um unterschiedliche Anbaukulturen mittels überwachter und unüberwachter Klassifikation unterscheiden zu können. Als Eingangsdaten für die Untersuchung wurden Bilder des RapidEye Systems verwendet. Es wurden Bildgrößen zwischen 13 m und 747.5 m in Schritten von 6.5 m simuliert. Als limitierende Faktoren für die Klassifikation wurden unterschiedliche Schwellenwerte für Maße der Klassifikationsgenauigkeit und Klassifikationsunsicherheit berücksichtigt. Die Ergebnisse zeigen, dass die Werte für tolerierbare Pixelgrößen und Pixelreinheiten sowohl landschafts- als auch feldfruchtspezifisch waren. Zudem konnten Feldfrüchte nicht simultan innerhalb der Wachstumsperiode identifiziert werden und die Voraussetzungen änderten sich in verschiedenen Jahren, was wahrscheinlich auf die unterschiedlichen agro-ökologischen Bedingungen in den untersuchten Landschaften zurückgeführt werden kann. Die Ergebnisse zeigen, dass Klassifikationsgüte in Karten räumlich ungleich verteilt war und von den räumlichen Strukturen bzw. von der Wahl der räumlichen Auflösung abhing. Die vorgestellte Methodik kann auch in anderen Agrarlandschaften getestet werden. Des Weiteren kann die Eignung bestehender bzw. die Entwicklung künftiger Satellitenbildmissionen unterstützt werden. In Hinblick auf die Nutzung von Satellitenbild-Fernerkundung für Agrarmonitoring und deren Anwendung in einer Vielfalt von Agrarlandschaften kann festgestellt werden, dass die räumliche Übertragbarkeit von Methoden und die Stabilität der Ergebnisse (z.B. gleichbleibend hohe Klassifikationsgenauigkeiten) weiterhin einen wichtigen Forschungsgegenstand darstellen. So konnte in dieser Studie gezeigt werden, dass herkömmliche Methoden zur Landnutzungsklassifikation bzw. Aussagen zu optimalen Pixelgrößen nicht in allen Fällen auf andere Regionen oder über mehrere Jahre übertragbar sind. In Zentralasien, welches die Fokusregion dieser Studie ist, zeigte sich, dass die Kombination verschiedener Klassifikationsalgorithmen sinnvoll ist, da die Klassifikationsgenauigkeit bei Klassen mit nur einer geringen Anzahl von Trainingsgebieten gesteigert werden konnte. Dies macht die Anwendung dieses Verfahrens im operationellen Kontext interessant. Die Eignung eines einzigen Satellitenbildsystems (mit einer bestimmten Pixelgröße) für die agrarische Landnutzungsklassifikation in mehreren Agrarlandschaften muss in Frage gestellt werden und die synergistische Nutzung von Daten unterschiedlicher räumlicher Auflösung sollte vorangetrieben werden. Dabei ist die Untersuchung des kombinierten Einflusses der räumlichen und zeitlichen Auflösung auf die agrarische Landnutzungsklassifikation von großer Bedeutung für das erdbeobachtungsgestützte Agrarmonitoring. KW - Fernerkundung KW - Remote Sensing KW - Agriculture KW - Landwirtschaft KW - Zentralasien KW - Agrarlandschaft KW - Landnutzung Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-102093 ER - TY - JOUR A1 - Ertl, Andreas A1 - Giester, Gerald A1 - Schüssler, Ulrich A1 - Brätz, Helene A1 - Okrusch, Martin A1 - Tillmanns, Ekkehart A1 - Bank, Hermann T1 - Cu- and Mn-bearing tourmalines from Brazil and Mozambique: crystal structures, chemistry and correlations JF - Mineralogy and Petrology N2 - Cu- and Mn-bearing tourmalines from Brazil and Mozambique were characterised chemically (EMPA and LA-ICP-MS) and by X-ray single-crystal structure refinement. All these samples are rich in Al, Li and F (fluor-elbaite) and contain significant amounts of CuO (up to ~1.8 wt%) and MnO (up to ~3.5 wt%). Structurally investigated samples show a pronounced positive correlation between the distances and the (Li + Mn\(^{2+}\) + Cu + Fe\(^{2+}\)) content (apfu) at this site with R\(^2\) = 0.90. An excellent negative correlation exists between the distances and the Al\(_2\)O\(_3\) content (R\(^2\) = 0.94). The samples at each locality generally show a strong negative correlation between the X-site vacancies and the (MnO + FeO) content. The Mn content in these tourmalines depends on the availability of Mn, on the formation temperature, as well as on stereochemical constraints. Because of a very weak correlation between MnO and CuO we believe that the Cu content in tourmaline is essentially dependent on the availability of Cu and on stereochemical constraints. KW - mineralogy KW - Brazil KW - Mozambique Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127296 VL - 107 IS - 2 ER - TY - THES A1 - Mutz, Sebastian T1 - Dynamic Statistical Modelling of Climate-Related Mass Balance Changes in Norway T1 - Dynamisch-Statistische Modellierung Klimabedingter Gletschermassenveränderungen in Norwegen N2 - The glaciers in Norway exert a strong influence on Norwegian economy and society. Unlike many glaciers elsewhere and despite ongoing climate change and warming, many of them showed renewed advances and positive net mass changes in the 1980's and 1990's, followed by rapid retreats and mass losses since 2000. This difference in behaviour may be attributed to differences and shifts in the glaciological regime - the differences in the magnitude of impacts of climatic and non-climatic geographical factors on the glacier mass. This study investigates the influence of various atmospheric variables on mass balance changes of a selection of glaciers in Norway by means of Pearson correlation analyses and cross-validated stepwise multiple regression analyses. The analyses are carried out for three time periods (1949-2008, 1949-1988, 1989-2008) separately in order to take into consideration the possible shift in the glaciological regime in the 1980's. The atmospheric variables are constructed from ERA40 and NCEP/NCAR re-analysis datasets and include regional means of seasonal air temperature and precipitation rates and atmospheric circulation indices. The multiple regression models trained in these time periods are then applied to predictors reconstructed from the CMIP3 climate model dataset to generate an estimate for mass changes from the year 1950 to 2100. The temporal overlap of estimates and observations is used for calibration. Finally, observed atmospheric states in seasons that are characterised by a particularly positive or negative mass balance are categorised into time periods of modelled climate by the application of a Bayesian classification procedure. The strongest influence on winter mass balance is exerted by different indices of the North Atlantic Oscillation (NAO), Northern Annular Mode (NAM) and precipitation. The correlation coefficients and explained variances determined from the multiple regression analyses reveal an East-West gradient, suggesting a weaker influence of the NAO and NAM on glaciers underlying a more continental regime. The highest correlation coefficients and explained variances were obtained for the 1989-2008 time period, which might be due to a strong and predominantly positive phase of the NAO. Multi-model ensemble means of the estimates show a mass loss for all three eastern glaciers, while the estimates for the more maritime glaciers are ambivalent. In general, the estimates show a greater sensitivity to the training time period than to the greenhouse gas emission scenarios according to which the climates were simulated. The average net mass change by the end of 2100 is negative for all glaciers except for the northern Engabreen. For many glaciers, the Bayesian classification of observed atmospheric states into time periods of modelled climate reveals a decrease in probability of atmospheric states favouring extremes in winter, and an increase in probability of atmospheric states favouring extreme mass loss in summer for the distant future (2071-2100). This pattern of probabilities for the ablation season is most pronounced for glaciers underlying a continental and intermediate regime. N2 - Gletscher in Norwegen stellen einen starken Einflussfaktor auf Wirtschaft und Gesellschaft dar. Trotz des Klimawandels und Erwärmung kam es zu einem Vorstoß der Gletscher in den späten 1980er und 1990ern, welcher erst ab dem Jahr 2000 durch einen starken Massenverlust abgelöst wurde. Dieses Verhalten lässt sich möglicherweise durch Unterschiede und Veränderungen im glaziologischen Regime erklären, d.h. Unterschiede in der Stärke der Einflüsse von klimatisch und nicht-klimatischen Faktoren auf die Gletschermassenbilanzen. Diese Arbeit untersucht den Einfluss verschiedener atmosphärischer Variablen auf die Massenveränderungen einiger Gletscher in Norwegen mit Hilfe von Korrelationsanalysen und kreuzvalidierten schrittweise multiple Regressionsanalysen. Diese werden für die Zeitabschnitte 1949-2008, 1949-1988 und 1989-2008 separat durchgeführt um den möglichen Regimewechsel in the 1980ern zu berücksichtigen. Die atmosphärischen Variablen werden aus ERA40 und NCEP/NCAR Re-analysen erstellt und beinhalten unter anderem atmosphärische Zirkulationsindizes und regionale Mittel von saisonalem Niederschlag und Temperatur. Die Regressionmodelle werden dann auf die aus den Daten des CMIP3 Klimamodelldatenarchiv rekonstruierten Prädiktoren angewandt um eine Abschätzung der Gletschermassenveränderung für den Zeitraum von 1950 bis 2100 zu erstellen. Die zeitliche Überschneidung von Abschätzungen und Beobachtungen wird zur Eichung genutzt. Zuletzt wird durch einen Bayesischen Klassifizierungsansatz beobachtete atmosphärische Zustände in Jahren, die durch besonders negative oder positive Massenbilanzen geprägt sind, in Zeitabschnitte von modelliertem Klima eingeordnet. Der größte Einfluss auf Wintermassenbilanzen stellt die Nordatlantische Oszillation, Arktische Oszillation und Niederschlagsmittel dar. Die Höhe der Korrelationskoeffizienten und der durch diese Prädiktoren erklärte Varianz der Wintermassenbilanz nimmt für die östlich gelegenen, kontinental geprägteren Gletscher ab. Die stärksten stochastischen Zusammenhänge und höchsten erklärten Varianzen werden aus dem 1989-2008 Zeitabschnitt gewonnen und lassen sich möglicherweise durch eine meist starke und positive Phase der Winter-NAO in diesem Zeitraum erklären. Multi-model Ensemble Means der Abschätzungen der Gletschermassenveränderungen zeigen den größten Massenverlust für die östlich gelegenen, kontinentaleren Gletscher auf. Die Abschätzungen für die eher maritim geprägten Gletscher sind weniger eindeutig. Im Allgemeinen reagieren die Abschätzungen empfindlicher auf die Wahl des Trainingszeitraums für die Regressionsmodelle als auf die Emissionsszenarien der Klimamodellläufe. Im Durchschnitt ist die kumulative Massenbilanz im Jahr 2100 jedoch für fast alle Gletscher negativ. Der nördlich gelegene Engabreen stellt die einzige Ausnahme dar. Die Resultate des Bayesischen Klassifikationsansatzes zeigen eine Abnahme in der Wahrscheinlichkeit für atmospphärischen Zustände, die Minima und Maxima winterlicher Akkumulation begünstigen. Des Weiteren zeigen die Resultate eine Zunahme in der Wahrscheinlichkeit der atmosphärischen Zustände, die starken Massenverlust im Sommer begünstigen. Dies ist besonders bei den Gletschern der Fall, die einem kontinentalen oder Übergangsregime unterliegen. KW - Norwegen KW - Klimatologie KW - Klimaänderung KW - Gletscherschwankung KW - Geschichte 1949-2008 KW - dynamic-statistical KW - statistica modelling KW - glaciers KW - climate change KW - norway KW - statistics KW - bayesian Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114799 ER - TY - JOUR A1 - Naeimi, Vahid A1 - Leinenkugel, Patrick A1 - Sabel, Daniel A1 - Wagner, Wolfgang A1 - Apel, Heiko A1 - Kuenzer, Claudia T1 - Evaluation of Soil Moisture Retrieval from the ERS and Metop Scatterometers in the Lower Mekong Basin JF - Remote Sensing N2 - The natural environment and livelihoods in the Lower Mekong Basin (LMB) are significantly affected by the annual hydrological cycle. Monitoring of soil moisture as a key variable in the hydrological cycle is of great interest in a number of Hydrological and agricultural applications. In this study we evaluated the quality and spatiotemporal variability of the soil moisture product retrieved from C-band scatterometers data across the LMB sub-catchments. The soil moisture retrieval algorithm showed reasonable performance in most areas of the LMB with the exception of a few sub-catchments in the eastern parts of Laos, where the land cover is characterized by dense vegetation. The best performance of the retrieval algorithm was obtained in agricultural regions. Comparison of the available in situ evaporation data in the LMB and the Basin Water Index (BWI), an indicator of the basin soil moisture condition, showed significant negative correlations up to R = −0.85. The inter-annual variation of the calculated BWI was also found corresponding to the reported extreme hydro-meteorological events in the Mekong region. The retrieved soil moisture data show high correlation (up to R = 0.92) with monthly anomalies of precipitation in non-irrigated regions. In general, the seasonal variability of soil moisture in the LMB was well captured by the retrieval method. The results of analysis also showed significant correlation between El Niño events and the monthly BWI anomaly measurements particularly for the month May with the maximum correlation of R = 0.88. KW - soil moisture KW - scatterometer KW - ASCAT KW - Mekong Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130480 VL - 5 IS - 4 ER - TY - THES A1 - Fritsch, Sebastian T1 - Spatial and temporal patterns of crop yield and marginal land in the Aral Sea Basin: derivation by combining multi-scale and multi-temporal remote sensing data with alight use efficiency model T1 - Räumliche und zeitliche Muster von Erntemengen und marginalem Land im Aralseebecken: Erfassung durch die Kombination von multiskaligen und multitemporalen Fernerkundungsdaten mit einem Lichtnutzungseffizienzmodell N2 - Irrigated agriculture in the Khorezm region in the arid inner Aral Sea Basin faces enormous challenges due to a legacy of cotton monoculture and non-sustainable water use. Regional crop growth monitoring and yield estimation continuously gain in importance, especially with regard to climate change and food security issues. Remote sensing is the ideal tool for regional-scale analysis, especially in regions where ground-truth data collection is difficult and data availability is scarce. New satellite systems promise higher spatial and temporal resolutions. So-called light use efficiency (LUE) models are based on the fraction of photosynthetic active radiation absorbed by vegetation (FPAR), a biophysical parameter that can be derived from satellite measurements. The general objective of this thesis was to use satellite data, in conjunction with an adapted LUE model, for inferring crop yield of cotton and rice at field (6.5 m) and regional (250 m) scale for multiple years (2003-2009), in order to assess crop yield variations in the study area. Intensive field measurements of FPAR were conducted in the Khorezm region during the growing season 2009. RapidEye imagery was acquired approximately bi-weekly during this time. The normalized difference vegetation index (NDVI) was calculated for all images. Linear regression between image-based NDVI and field-based FPAR was conducted. The analyses resulted in high correlations, and the resulting regression equations were used to generate time series of FPAR at the RapidEye level. RapidEye-based FPAR was subsequently aggregated to the MODIS scale and used to validate the existing MODIS FPAR product. This step was carried out to evaluate the applicability of MODIS FPAR for regional vegetation monitoring. The validation revealed that the MODIS product generally overestimates RapidEye FPAR by about 6 to 15 %. Mixture of crop types was found to be a problem at the 1 km scale, but less severe at the 250 m scale. Consequently, high resolution FPAR was used to calibrate 8-day, 250 m MODIS NDVI data, this time by linear regression of RapidEye-based FPAR against MODIS-based NDVI. The established FPAR datasets, for both RapidEye and MODIS, were subsequently assimilated into a LUE model as the driving variable. This model operated at both satellite scales, and both required an estimation of further parameters like the photosynthetic active radiation (PAR) or the actual light use efficiency (LUEact). The latter is influenced by crop stress factors like temperature or water stress, which were taken account of in the model. Water stress was especially important, and calculated via the ratio of the actual (ETact) to the potential, crop-specific evapotranspiration (ETc). Results showed that water stress typically occurred between the beginning of May and mid-September and beginning of May and end of July for cotton and rice crops, respectively. The mean water stress showed only minor differences between years. Exceptions occurred in 2008 and 2009, where the mean water stress was higher and lower, respectively. In 2008, this was likely caused by generally reduced water availability in the whole region. Model estimations were evaluated using field-based harvest information (RapidEye) and statistical information at district level (MODIS). The results showed that the model at both the RapidEye and the MODIS scale can estimate regional crop yield with acceptable accuracy. The RMSE for the RapidEye scale amounted to 29.1 % for cotton and 30.4 % for rice, respectively. At the MODIS scale, depending on the year and evaluated at Oblast level, the RMSE ranged from 10.5 % to 23.8 % for cotton and from -0.4 % to -19.4 % for rice. Altogether, the RapidEye scale model slightly underestimated cotton (bias = 0.22) and rice yield (bias = 0.11). The MODIS-scale model, on the other hand, also underestimated official rice yield (bias from 0.01 to 0.87), but overestimated official cotton yield (bias from -0.28 to -0.6). Evaluation of the MODIS scale revealed that predictions were very accurate for some districts, but less for others. The produced crop yield maps indicated that crop yield generally decreases with distance to the river. The lowest yields can be found in the southern districts, close to the desert. From a temporal point of view, there were areas characterized by low crop yields over the span of the seven years investigated. The study at hand showed that light use efficiency-based modeling, based on remote sensing data, is a viable way for regional crop yield prediction. The found accuracies were good within the boundaries of related research. From a methodological viewpoint, the work carried out made several improvements to the existing LUE models reported in the literature, e.g. the calibration of FPAR for the study region using in situ and high resolution RapidEye imagery and the incorporation of crop-specific water stress in the calculation. N2 - Die vorliegende Arbeit beschäftigt sich mit der Modellierung regionaler Erntemengen von Baumwolle und Reis in der usbekischen Region Khorezm, einem Bewässerungsgebiet das geprägt ist von langjähriger Baumwoll-Monokultur und nicht-nachhaltiger Land- und Wassernutzung. Basis für die Methodik waren Satellitendaten, die durch ihre großflächige Abdeckung und Objektivität einen enormen Vorteil in solch datenarmen und schwer zugänglichen Regionen darstellen. Bei dem verwendeten Modell handelt es sich um ein sog. Lichtnutzungseffizienz-Modell (im Englischen Light Use Efficiency [LUE] Model), das auf dem Anteil der photosynthetisch aktiven Strahlung basiert, welcher von Pflanzen für das Wachstum aufgenommen wird (Fraction of Photosynthetic Active Radiation, FPAR). Dieser Parameter kann aus Satellitendaten abgeleitet werden. Das allgemeine Ziel der vorliegenden Arbeit war die Nutzung von Satellitendaten für die Ableitung der Erntemengen von Baumwolle und Reis. Dazu wurde ein Modell entwickelt, das sowohl auf der Feldebene (Auflösung von 6,5 m) als auch auf der regionalen Ebene (Auflösung von 250 m) operieren kann. Während die Ableitung der Erntemengen auf der Feldebene nur für ein Jahr erfolgte (2009), wurden sie auf der regionalen Ebene für den Zeitraum 2003 bis 2009 modelliert. Intensive Feldmessungen von FPAR wurden im Studiengebiet während der Wachstumssaison 2009 durchgeführt. Parallel dazu wurden RapidEye-Daten in ca. zweiwöchentlichem Abstand aufgezeichnet. Aus den RapidEye-Daten wurde der Normalized Difference Vegetation Index (NDVI) berechnet, der anschließend mit den im Feld gemessenen FPAR-Werten korreliert wurde. Die entstandenen Regressionsgleichungen wurden benutzt um Zeitserien von FPAR auf RapidEye-Niveau zu erstellen. Anschließend wurden diese Zeitserien auf die MODIS-Skala aggregiert um damit das MODIS FPAR-Produkt zu validieren (1 km), bzw. eine Kalibrierung des 8-tägigen 250 m NDVI-Datensatzes vorzunehmen. Der erste Schritt zeigte dass das MODIS-Produkt im Allgemeinen die RapidEye-basierten FPAR-Werte um 6 bis 15 % überschätzt. Aufgrund der besseren Auflösung wurde das kalibrierte 250 m FPAR-Produkt für die weitere Modellierung verwendet. Für die eigentliche Modellierung wurden neben den FPAR-Eingangsdaten noch weitere Daten und Parameter benötigt. Dazu gehörte z.B. die tatsächliche Lichtnutzungseffizienz (LUEact), welche von Temperatur- und Wasserstress beeinflusst wird. Wasserstress wurde berechnet aus dem Verhältnis von tatsächlicher (ETact) zu potentieller, feldfruchtspezifischer Evapotranspiration (ETc), die beide aus einer Kombination von Satelliten- und Wetterdaten abgeleitet wurden. Der durchschnittliche Wasserstress schwankte nur geringfügig von Jahr zu Jahr, mit Ausnahmen in den Jahren 2008 und 2009. Die Modellschätzungen wurden durch feldbasierte Ernteinformationen (RapidEye-Ebene) sowie regionale statistische Daten (MODIS-Ebene) evaluiert. Die Ergebnisse zeigten, dass beide Modellskalen regionale Ernteerträge mit guter Genauigkeit nachbilden können. Der Fehler für das RapidEye-basierte Modell betrug 29,1 % für Baumwolle und 30,4 % für Reis. Die Genauigkeiten für das MODIS-basierte Modell variierten, in Abhängigkeit des betrachteten Jahres, zwischen 10,5 % und 23,8 % für Baumwolle und zwischen -0,4 % und -19,4 % für Reis. Insgesamt gab es eine leichte Unterschätzung der Baumwoll- (Bias = 0,22) und Reisernte (Bias = 0,11) seitens des RapidEye-Modells. Das MODIS-Modell hingegen unterschätzte zwar auch die (offizielle) Reisernte (mit einem Bias zwischen 0,01 und 0,87), überschätzte jedoch die offiziellen Erntemengen für die Baumwolle (Bias zwischen -0,28 und -0,6). Die Evaluierung der MODIS-Skala zeigte dass die Genauigkeiten extrem zwischen den verschiedenen Distrikten schwankten. Die erstellten Erntekarten zeigten dass Erntemengen grundsätzlich mit der Distanz zum Fluss abnehmen. Die niedrigsten Erntemengen traten in den südlichsten Distrikten auf, in der Nähe der Wüste. Betrachtet man die Ergebnisse schließlich über die Zeit hinweg, gab es Gebiete die über den gesamten Zeitraum von sieben Jahren stets von niedrigen Erntemengen gekennzeichnet waren. Die vorliegende Studie zeigt, dass satellitenbasierte Lichtnutzungseffizienzmodelle ein geeignetes Werkzeug für die Ableitung und die Analyse regionaler Erntemengen in zentralasiatischen Bewässerungsregionen darstellen. Verglichen mit verwandten Studien stellten sich die ermittelten Genauigkeiten sowohl auf der RapidEye- als auch auf der MODIS-Skala als gut dar. Vom methodischen Standpunkt aus gesehen ergänzte diese Arbeit vorhanden LUE-Modelle um einige Neuerungen und Verbesserungen, wie z.B. die Validierung und Kalibrierung von FPAR für die Studienregion mittels Feld- und hochaufgelösten RapidEye-Daten und dem Einbezug von feldfrucht-spezifischem Wasserstress in die Modellierung. KW - Fernerkundung KW - Modellierung KW - Ernte KW - Baumwollpflanze KW - Reis KW - Satellit KW - Erdbeobachtung KW - remote sensing KW - crop yield KW - modeling KW - light use efficiency KW - irrigation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87939 ER - TY - JOUR A1 - Shahabfar, Alireza A1 - Eitzinger, Josef T1 - Spatio-Temporal Analysis of Droughts in Semi-Arid Regions by Using Meteorological Drought Indices JF - Atmosphere N2 - Six meteorological drought indices including percent of normal (PN), standardized precipitation index (SPI), China-Z index (CZI), modified CZI (MCZI), Z-Score (Z), the aridity index of E. de Martonne (I) are compared and evaluated for assessing spatio-temporal dynamics of droughts in six climatic regions in Iran. Results indicated that by consideration of the advantages and disadvantages of the mentioned drought predictors in Iran, the Z-Score, CZI and MCZI could be used as a good meteorological drought predictor. Depending on the month, the length of drought and climatic conditions of the region, they are an alternative to the SPI that has limitations both because of only a few available long term data series in Iran and its complex structure. KW - semi-arid region KW - standardized precipitation index KW - drought index KW - drought monitoring KW - Iran Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128644 VL - 4 IS - 2 ER - TY - JOUR A1 - Spitznagel, N. A1 - Durig, T. A1 - Zimanowski, B. T1 - Trigger - and heat-transfer times measured during experimental molten-fuel-interactions JF - AIP Advances N2 - A modified setup featuring high speed high resolution data and video recording was developed to obtain detailed information on trigger and heat transfer times during explosive molten fuel-coolant-interaction (MFCI). MFCI occurs predominantly in configurations where water is entrapped by hot melt. The setup was modified to allow direct observation of the trigger and explosion onset. In addition the influences of experimental control and data acquisition can now be more clearly distinguished from the pure phenomena. More precise experimental studies will facilitate the description of MFCI thermodynamics. KW - temperature measurement KW - data acquisition KW - heat transfer KW - expolsions KW - shock waves Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128625 VL - 3 IS - 102126 ER -