TY - JOUR A1 - Wohlgemuth, Matthias A1 - Miyazaki, Mitsuhiko A1 - Tsukada, Kohei A1 - Weiler, Martin A1 - Dopfer, Otto A1 - Fujii, Masaaki A1 - Mitrić, Roland T1 - Deciphering environment effects in peptide bond solvation dynamics by experiment and theory JF - Physical Chemistry Chemical Physics N2 - Most proteins work in aqueous solution and the interaction with water strongly affects their structure and function. However, experimentally the motion of a specific single water molecule is difficult to trace by conventional methods, because they average over the heterogeneous solvation structure of bulk water surrounding the protein. Here, we provide a detailed atomistic picture of the water rearrangement dynamics around the –CONH– peptide linkage in the two model systems formanilide and acetanilide, which simply differ by the presence of a methyl group at the peptide linkage. The combination of picosecond pump–probe time-resolved infrared spectroscopy and molecular dynamics simulations demonstrates that the solvation dynamics at the molecular level is strongly influenced by this small structural difference. The effective timescales for solvent migration triggered by ionization are mainly controlled by the efficiency of the kinetic energy redistribution rather than the shape of the potential energy surface. This approach provides a fundamental understanding of protein hydration and may help to design functional molecules in solution with tailored properties. KW - infrared-spectra KW - hydration dynamics KW - trans-formanilide KW - water migration KW - protein hydration Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159647 UR - http://pubs.rsc.org/en/content/articlelanding/2017/cp/c7cp03992a N1 - Accepted Version VL - 19 IS - 33 ER - TY - INPR A1 - Wohlgemuth, Matthias A1 - Miyazaki, Mitsuhiko A1 - Tsukada, Kohei A1 - Weiler, Martin A1 - Dopfer, Otto A1 - Fujii, Masaaki A1 - Mitrić, Roland T1 - Deciphering environment effects in peptide bond solvation dynamics by experiment and theory T2 - Physical Chemistry Chemical Physics N2 - Most proteins work in aqueous solution and the interaction with water strongly affects their structure and function. However, experimentally the motion of a specific single water molecule is difficult to trace by conventional methods, because they average over the heterogeneous solvation structure of bulk water surrounding the protein. Here, we provide a detailed atomistic picture of the water rearrangement dynamics around the –CONH– peptide linkage in the two model systems formanilide and acetanilide, which simply differ by the presence of a methyl group at the peptide linkage. The combination of picosecond pump–probe time-resolved infrared spectroscopy and molecular dynamics simulations demonstrates that the solvation dynamics at the molecular level is strongly influenced by this small structural difference. The effective timescales for solvent migration triggered by ionization are mainly controlled by the efficiency of the kinetic energy redistribution rather than the shape of the potential energy surface. This approach provides a fundamental understanding of protein hydration and may help to design functional molecules in solution with tailored properties. KW - hydration dynamics KW - trans-formanilide KW - water migration KW - protein hydration KW - infrared-spectra Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159483 UR - http://pubs.rsc.org/en/content/articlelanding/2017/cp/c7cp03992a N1 - Submitted version ER - TY - INPR A1 - Röder, Anja A1 - Humeniuk, Alexander A1 - Giegerich, Jens A1 - Fischer, Ingo A1 - Poisson, Lionel A1 - Mitric, Roland T1 - Femtosecond Time-Resolved Photoelectron Spectroscopy of the Benzyl Radical T2 - Physical Chemistry Chemical Physics N2 - We present a joint experimental and computational study of the nonradiative deactivation of the benzyl radical, C\(_7\)H\(_7\) after UV excitation. Femtosecond time-resolved photoelectron imaging was applied to investigate the photodynamics of the radical. The experiments were accompanied by excited state dynamics simulations using surface hopping. Benzyl has been excited at 265 nm into the D-band (\(\pi\pi^*\)) and the dynamics was probed using probe wavelengths of 398 nm or 798 nm. With 398 nm probe a single time constant of around 70-80 fs was observed. When the dynamics was probed at 798 nm, a second time constant \(\tau_2\)=1.5 ps was visible. It is assigned to further non-radiative deactivation to the lower-lying D\(_1\)/D\(_2\) states. KW - Nonadiabatic dynamics KW - time-resolved photoelectron spectroscopy KW - benzyl radical Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159474 UR - http://dx.doi.org/10.1039/C7CP01437F N1 - Submitted version ER - TY - INPR A1 - Hoche, Joscha A1 - Schmitt, Hans-Christian A1 - Humeniuk, Alexander A1 - Fischer, Ingo A1 - Mitrić, Roland A1 - Röhr, Merle I. S. T1 - The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer T2 - Physical Chemistry Chemical Physics N2 - The understanding of excimer formation in organic materials is of fundamental importance, since excimers profoundly influence their functional performance in applications such as light-harvesting, photovoltaics or organic electronics. We present a joint experimental and theoretical study of the ultrafast dynamics of excimer formation in the pyrene dimer in a supersonic jet, which is the archetype of an excimer forming system. We perform simulations of the nonadiabatic photodynamics in the frame of TDDFT that reveal two distinct excimer formation pathways in the gas-phase dimer. The first pathway involves local excited state relaxation close to the initial Franck–Condon geometry that is characterized by a strong excitation of the stacking coordinate exhibiting damped oscillations with a period of 350 fs that persist for several picoseconds. The second excimer forming pathway involves large amplitude oscillations along the parallel shift coordinate with a period of ≈900 fs that after intramolecular vibrational energy redistribution leads to the formation of a perfectly stacked dimer. The electronic relaxation within the excitonic manifold is mediated by the presence of intermolecular conical intersections formed between fully delocalized excitonic states. Such conical intersections may generally arise in stacked π-conjugated aggregates due to the interplay between the long-range and short-range electronic coupling. The simulations are supported by picosecond photoionization experiments in a supersonic jet that provide a time-constant for the excimer formation of around 6–7 ps, in good agreement with theory. Finally, in order to explore how the crystal environment influences the excimer formation dynamics we perform large scale QM/MM nonadiabatic dynamics simulations on a pyrene crystal in the framework of the long-range corrected tight-binding TDDFT. In contrast to the isolated dimer, the excimer formation in the crystal follows a single reaction pathway in which the initially excited parallel slip motion is strongly damped by the interaction with the surrounding molecules leading to the slow excimer stabilization on a picosecond time scale. KW - exciton dynamics KW - pyrene dimer Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159656 UR - http://dx.doi.org/10.1039/C7CP03990E N1 - Submitted version ER - TY - JOUR A1 - Hoche, Joscha A1 - Schmitt, Hans-Christian A1 - Humeniuk, Alexander A1 - Fischer, Ingo A1 - Mitrić, Roland A1 - Röhr, Merle I. S. T1 - The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer JF - Physical Chemistry Chemical Physics N2 - The understanding of excimer formation in organic materials is of fundamental importance, since excimers profoundly influence their functional performance in applications such as light-harvesting, photovoltaics or organic electronics. We present a joint experimental and theoretical study of the ultrafast dynamics of excimer formation in the pyrene dimer in a supersonic jet, which is the archetype of an excimer forming system. We perform simulations of the nonadiabatic photodynamics in the frame of TDDFT that reveal two distinct excimer formation pathways in the gas-phase dimer. The first pathway involves local excited state relaxation close to the initial Franck–Condon geometry that is characterized by a strong excitation of the stacking coordinate exhibiting damped oscillations with a period of 350 fs that persist for several picoseconds. The second excimer forming pathway involves large amplitude oscillations along the parallel shift coordinate with a period of ≈900 fs that after intramolecular vibrational energy redistribution leads to the formation of a perfectly stacked dimer. The electronic relaxation within the excitonic manifold is mediated by the presence of intermolecular conical intersections formed between fully delocalized excitonic states. Such conical intersections may generally arise in stacked π-conjugated aggregates due to the interplay between the long-range and short-range electronic coupling. The simulations are supported by picosecond photoionization experiments in a supersonic jet that provide a time-constant for the excimer formation of around 6–7 ps, in good agreement with theory. Finally, in order to explore how the crystal environment influences the excimer formation dynamics we perform large scale QM/MM nonadiabatic dynamics simulations on a pyrene crystal in the framework of the long-range corrected tight-binding TDDFT. In contrast to the isolated dimer, the excimer formation in the crystal follows a single reaction pathway in which the initially excited parallel slip motion is strongly damped by the interaction with the surrounding molecules leading to the slow excimer stabilization on a picosecond time scale. KW - exciton dynamics KW - pyrene dimer Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159514 UR - http://dx.doi.org/10.1039/C7CP03990E N1 - Accepted version VL - 19 IS - 36 ER -