TY - THES A1 - Zhang, Tengyu T1 - Development of Modified polylysine based antibody conjugated nanoparticles with tumor-restricted, FcγR-independent stimulatory activity by targeting Fn14 T1 - Entwicklung modifizierter, mit Antikörpern konjugierter Nanopartikel auf Polylysinbasis mit tumorbeschränkter, FcγR- unabhängiger stimulierender Aktivität durch Ausrichtung auf Fn14 N2 - In this study, we developed an innovative nanoparticle formulation to facilitate the delivery of antitumor antibodies to tumor sites. The study commenced with the utilization of 13 bispecific antibody fusion proteins, which targeted the Fn14 receptor, thereby validating the pivotal role of crosslinking in Fn14 receptor activation. Subsequently, gold nanoparticles were activated using COOH-PEG-SH in combination with EDC/NHS, and subsequently conjugated with two Fn14-targeting antibodies, PDL192 and 5B6. Following this, a pH-sensitive shell was generated on the outer layer of the antibody-coupled gold nanoparticles through the application of chemically modified polylysine. The resultant complexes, termed MPL-antibody-AuNP, demonstrated a release profile reminiscent of the tumor microenvironment (TME). Notably, these complexes released antibody-AuNPs only in slightly acidic conditions while remaining intact in neutral or basic environments. Functionality analysis further affirmed the pH-sensitive property of MPL-antibody-AuNPs, demonstrating that the antibodies only initiated potent Fn14 activation in slightly acidic environments. This formulation holds potential for applicability to antibodies or ligands targeting the 80 TNFRSF family, given that gold nanoparticles successfully served as platforms for antibody crosslinking, thereby transforming these antibodies into potent agonists. Moreover, the TME disintegration profile of MPL mitigates the potential cytotoxic effects of antibodies, thereby circumventing associated adverse side effects. This study not only showcases the potential of nanoparticle formulations in targeted therapy, but also provides a solid foundation for further investigations on their clinical application in the context of targeting category II TNFRSF receptors with antibodies or ligands. N2 - In dieser Studie haben wir eine innovative Nanopartikel-Formulierung entwickelt, um die Auslieferung von Antitumor-Antikörpern an Tumorstellen zu erleichtern. Die Studie begann mit der Verwendung von 13 bispezifischen Antikörper-Fusionsproteinen, die auf den Fn14-Rezeptor abzielten, wodurch die entscheidende Rolle der Quervernetzung bei der Aktivierung des Fn14-Rezeptors bestätigt wurde. Anschließend wurden Goldnanopartikel unter Verwendung von COOH-PEG-SH in Kombination mit EDC/NHS aktiviert und danach mit zwei auf Fn14 abzielenden Antikörpern, PDL192 und 5B6, konjugiert. Daraufhin wurde eine pH-sensitive Schale auf der äußeren Schicht der mit Antikörpern gekoppelten Goldnanopartikel durch den Einsatz von chemisch modifiziertem Polylysin erzeugt. Die resultierenden Komplexe, bezeichnet als MPL-Antikörper-AuNP, zeigten ein Freisetzungsprofil, das an das Tumormikroumfeld (TME) erinnert. Bemerkenswert ist, dass diese Komplexe Antikörper-AuNP nur in leicht sauren Bedingungen freisetzten, während sie in neutralen oder basischen Umgebungen intakt blieben. Die Funktionalitätsanalyse bestätigte weiterhin die pH-empfindliche Eigenschaft der MPL-Antikörper-AuNPs, was zeigt, dass die Antikörper eine potente Fn14-Aktivierung nur in leicht sauren Bedingungen initiierten. Diese Formulierung hat Potenzial für die Anwendbarkeit auf Antikörper oder Liganden, die auf die Familie der TNFRSF abzielen, da die Goldnanopartikel erfolgreich als Plattformen für die Antikörpervernetzung dienten und diese Antikörper in potente Agonisten verwandelten. Darüber hinaus mildert das TME-Zerfallsprofil von MPL die potenziellen zytotoxischen Effekte der Antikörper, wodurch die damit verbundenen negativen Nebenwirkungen umgangen werden. Diese Studie zeigt nicht nur das Potenzial von Nanopartikel-Formulierungen in der gezielten Therapie auf, sondern bietet auch eine solide Grundlage für weitere Untersuchungen zu ihrer klinischen Anwendung im Kontext der Zielrichtung auf Kategorie-II-TNFRSF-Rezeptoren mit Antikörpern oder Liganden. KW - Immuntherapie KW - Immunotherapy Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-358650 ER - TY - THES A1 - Weber, Justus C. T1 - Development and preclinical assessment of ROR2-specific CAR-T cells for the treatment of clear cell renal cell carcinoma and multiple myeloma T1 - Entwicklung und präklinische Evaluation ROR2-spezifischer CAR-T Zellen zur Behandlung des klarzelligen Nierenzellkarzinoms und des Multiplen Myeloms N2 - Adoptive immunotherapy using chimeric antigen receptor (CAR)-modified T cells is an effective treatment for hematological malignancies that are refractory to conventional chemotherapy. To address a wider variety of cancer entities, there is a need to identify and characterize additional target antigens for CAR-T cell therapy. The two members of the receptor tyrosine kinase-like orphan receptor family, ROR1 and ROR2, have been found to be overexpressed on cancer cells and to correlate with aggressive cancer phenotypes. Recently, ROR1-specific CAR-T cells have entered testing in phase I clinical trials, encouraging us to assess the suitability of ROR2 as a novel target for CAR-T cell therapy. To study the therapeutic potential of targeting ROR2 in solid and hematological malignancies, we selected two representative cancer entities with high unmet medical need: renal cell carcinoma and multiple myeloma. Our data show that ROR2 is commonly expressed on primary samples and cell lines of clear cell renal cell carcinoma and multiple myeloma. To study the efficacy of ROR2-specific CAR T cell therapy, we designed two CAR constructs with 10-fold binding affinity differences for the same epitope of ROR2. We found both cell products to exhibit antigen-specific anti-tumor reactivity in vitro, including tumor cell lysis, secretion of the effector cytokines interleukin-2 (IL-2) and interferon-gamma (IFNγ), and T cell proliferation. In vivo studies revealed ROR2 specific CAR-T cells to confer durable responses, significant survival benefits and long-term persistence of CAR-expressing T cells. Overall, there was a trend towards more potent anti-tumor efficacy upon treatment with T cells that expressed the CAR with higher affinity for ROR2, both in vitro and in vivo. We performed a preclinical safety and toxicology assessment comprising analyses of ROR2 expression in healthy human and murine tissues, cross-reactivity, and adoptive T cell transfer in immunodeficient mice. We found ROR2 expression to be conserved in mice, and low-level expression was detectable in the male and female reproductive system as well as parts of the gastrointestinal tract. CAR-T cells targeting human ROR2 were found to elicit similarly potent reactivity upon recognition of murine ROR2. In vivo analyses showed transient tissue-specific enrichment and activation of ROR2-specific CAR-T cells in organs with high blood circulation, such as lung, liver, or spleen, without evidence for clinical toxicity or tissue damage as determined by histological analyses. Furthermore, we humanized the CAR binding domain of ROR2-specific CAR-T cells to mitigate the risk of adverse immune reactions and concomitant CAR-T cell rejection. Functional analyses confirmed that humanized CARs retained their specificity and functionality against ROR2-positive tumor cells in vitro. In summary, we show that ROR2 is a prevalent target in RCC and MM, which can be addressed effectively with ROR2-specific CAR-T cells in preclinical models. Our preliminary toxicity studies suggest a favorable safety profile for ROR2-specific CAR-T cells. These findings support the potential to develop ROR2-specific CAR-T cells clinically to obtain cell products with broad utility. N2 - Adoptive Immuntherapie mit T-Zellen, die chimäre Antigenrezeptoren (CAR) exprimieren, ist ein effektiver Behandlungsansatz für Chemotherapie-resistente Blutkrebserkrankungen. Die Übertragung dieses Konzepts auf weitere Krebsarten erfordert die Identifikation und Charakterisierung neuer Zielstrukturen für die CAR-T Zelltherapie. ROR1 und ROR2, die beiden Mitglieder der Familie der Rezeptortyrosinkinase-ähnlichen Orphan-Rezeptoren, werden auf einer Vielzahl von Tumoren überexprimiert und korrelieren mit einer schlechten Prognose und höherer Krebs-Invasivität. Kürzlich konnte ROR1 als Zielstruktur für die CAR-T Zelltherapie bestätigt werden und die Effektivität und Sicherheit ROR1 spezifischer CAR-T Zellen wird derzeit im Rahmen klinischer Phase-I Studien näher untersucht. Aus diesem Grund waren wir daran interessiert, das therapeutische Potenzial ROR2-spezifischer Zelltherapie zu untersuchen. Als Modellsysteme hierfür wählten wir das Nierenzellkarzinom und das Multiple Myelom als repräsentative hämatologische und solide Krebserkrankungen mit hohem medizinischem Bedarf aus. Unsere Daten zeigen, dass ROR2 häufig auf Zelllinien und primären Tumorproben des klarzelligen Nierenzellkarzinoms und des Multiplen Myeloms vorkommt. Um die Effektivität ROR2-spezifischer CAR-T Zellen zu untersuchen, wurden zwei CAR Konstrukte mit zehnfach unterschiedlichen Bindungsaffinitäten für dasselbe Epitop von ROR2 hergestellt. Beide Zellprodukte zeigten hohe, antigen-spezifische Antitumor-Reaktivität in vitro – insbesondere im Hinblick auf Tumorzell-Lyse, Sekretion der Zytokine Interleukin-2 (IL-2) und Interferon gamma (IFNγ) und T-Zell Proliferation. In vivo beobachteten wir langanhaltende Antitumor-Effektivität durch ROR2-spezifische CAR-T Zellen, sowie signifikante Überlebensvorteile und langfristige T-Zell Persistenz. Außerdem beobachteten wir, sowohl in vitro als auch in vivo, einen Trend zu stärkerer Antitumor-Effektivität von T-Zellen, die den CAR mit höherer Affinität für ROR2 exprimierten. Im Rahmen einer präklinischen Toxikologie-Studie analysierten wir die Expression von ROR2 im gesunden Gewebe, die Kreuz-Reaktivität ROR2-spezifischer CAR-T Zellen und deren Sicherheit durch adoptiven T-Zell Transfer in immun-defiziente Mäuse. Unsere Daten zeigen, dass ROR2 in H. sapiens und M. musculus gleichermaßen exprimiert wird und ROR2 Expression war insbesondere in den weiblichen und männlichen Reproduktionsorganen und Teilen des Gastrointestinaltrakts detektierbar. Wir konnten außerdem zeigen, dass CAR-T Zellen, die menschliches ROR2 erkennen, vergleichbare Antitumor-Reaktivität gegen Zellen, die murines ROR2 exprimieren, auslösen. Unsere in vivo Analysen zeigten temporäre Anreicherung und Aktivierung ROR2-spezifischer CAR-T Zellen in gut durchbluteten Geweben, wie Lunge, Leber und Milz, in der Abwesenheit klinischer Anzeichen für Toxizität oder histologisch nachweisbarer Gewebsschädigungen. Um die Risiken immunologischer Nebenwirkungen und die damit einhergehende Abstoßung ROR2-spezifischer CAR-T Zellen zu reduzieren, humanisierten wir die CAR Bindedomäne. Unsere Daten zeigen, dass humanisierte ROR2-spezifische CAR-T Zellen vergleichbare Spezifität und Funktionalität gegen ROR2-positive Tumorzellen in vitro aufweisen. Insgesamt zeigen unsere Daten, dass ROR2 eine häufig auftretende Zielstruktur auf der Oberfläche von RCC und MM Zellen ist und diese in präklinischen Modellen effektiv mittels ROR2-spezifischer CAR-T Zellen adressiert werden kann. Unsere vorläufigen Toxizitätsdaten deuten darauf hin, dass ROR2-spezifische CAR-T Zellen ein vorteilhaftes Sicherheitsprofil aufweisen. Alles in allem unterstützen diese Daten das Potenzial der klinischen Entwicklung ROR2-spezifischer CAR-T Zellen als Zellprodukte mit breit gefächerter Anwendbarkeit. KW - CAR-T-Zell-Therapie KW - Immuntherapie KW - CAR-T cell KW - ROR2 KW - cell therapy KW - cancer therapy Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-310399 ER - TY - THES A1 - Kühnemundt, Johanna T1 - Defined microphysiologic 3D tumour models with aspects from the tumour microenvironment for the evaluation of cellular immunotherapies T1 - Definierte mikrophysiologische 3D-Tumormodelle mit Aspekten aus der Tumormikroumgebung zur Evaluierung von zellulären Immuntherapien N2 - Adoptive cellular immunotherapy with chimeric antigen receptor (CAR) T cells is highly effective in haematological malignancies. This success, however, has not been achieved in solid tumours so far. In contrast to hematologic malignancies, solid tumours include a hostile tumour microenvironment (TME), that poses additional challenges for curative effects and consistent therapeutic outcome. These challenges manifest in physical and immunological barriers that dampen efficacy of the CAR T cells. Preclinical testing of novel cellular immunotherapies is performed mainly in 2D cell culture and animal experiments. While 2D cell culture is an easy technique for efficacy analysis, animal studies reveal information about toxicity in vivo. However, 2D cell culture cannot fully reflect the complexity observed in vivo, because cells are cultured without anchorage to a matrix and only short-term periods are feasible. Animal studies provide a more complex tissue environment, but xenografts often lack human stroma and tumour inoculation occurs mostly ectopically. This emphasises the need for standardisable and scalable tumour models with incorporated TME-aspects, which enable preclinical testing with enhanced predictive value for the clinical outcome of immunotherapies. Therefore, microphysiologic 3D tumour models based on the biological SISmuc (Small Intestinal mucosa and Submucosa) matrix with preserved basement membrane were engaged and improved in this work to serve as a modular and versatile tumour model for efficacy testing of CAR T cells. In order to reflect a variety of cancer entities, TME-aspects, long-term stability and to enhance the read-out options they were further adapted to achieve scalable and standardisable defined microphysiologic 3D tumour models. In this work, novel culture modalities (semi-static, sandwich-culture) were characterised and established that led to an increased and organised tissue generation and long-term stability. Application of the SISmuc matrix was extended to sarcoma and melanoma models and serial bioluminescence intensity (BLI)-based in vivo imaging analysis was established in the microphysiologic 3D tumour models, which represents a time-efficient read-out method for quality evaluation of the models and treatment efficacy analysis, that is independent of the cell phenotype. Isolation of cancer-associated-fibroblasts (CAFs) from lung (tumour) tissue was demonstrated and CAF-implementation further led to stromal-enriched microphysiologic 3D tumour models with in vivo-comparable tissue-like architecture. Presence of CAFs was confirmed by CAF-associated markers (FAP, α-SMA, MMP-2/-9) and cytokines correlated with CAF phenotype, angiogenesis, invasion and immunomodulation. Additionally, an endothelial cell barrier was implemented for static and dynamic culture in a novel bioreactor set-up, which is of particular interest for the analysis of immune cell diapedesis. Studies in microphysiologic 3D Ewing’s sarcoma models indicated that sarcoma cells could be sensitised for GD2-targeting CAR T cells. After enhancing the scale of assessment of the microphysiologic 3D tumour models and improving them for CAR T cell testing, the tumour models were used to analyse their sensitivity towards differently designed receptor tyrosine kinase-like orphan receptor 1 (ROR1) CAR T cells and to study the effects of the incorporated TME-aspects on the CAR T cell treatment respectively. ROR1 has been described as a suitable target for several malignancies including triple negative breast cancer (TNBC), as well as lung cancer. Therefore, microphysiologic 3D TNBC and lung cancer models were established. Analysis of ROR1 CAR T cells that differed in costimulation, spacer length and targeting domain, revealed, that the microphysiologic 3D tumour models are highly sensitive and can distinguish optimal from sub-optimal CAR design. Here, higher affinity of the targeting domain induced stronger anti-tumour efficacy and anti-tumour function depended on spacer length, respectively. Long-term treatment for 14 days with ROR1 CAR T cells was demonstrated in dynamic microphysiologic 3D lung tumour models, which did not result in complete tumour cell removal, whereas direct injection of CAR T cells into TNBC and lung tumour models represented an alternative route of application in addition to administration via the medium flow, as it induced strong anti-tumour response. Influence of the incorporated TME-aspects on ROR1 CAR T cell therapy represented by CAF-incorporation and/or TGF-β supplementation was analysed. Presence of TGF-β revealed that the specific TGF-β receptor inhibitor SD-208 improves ROR1 CAR T cell function, because it effectively abrogated immunosuppressive effects of TGF-β in TNBC models. Implementation of CAFs should provide a physical and immunological barrier towards ROR1 CAR T cells, which, however, was not confirmed, as ROR1 CAR T cell function was retained in the presence of CAFs in stromal-enriched microphysiologic 3D lung tumour models. The absence of an effect of CAF enrichment on CAR T cell efficacy suggests a missing component for the development of an immunosuppressive TME, even though immunomodulatory cytokines were detected in co-culture models. Finally, improved gene-edited ROR1 CAR T cells lacking exhaustion-associated genes (PD-1, TGF-β-receptor or both) were challenged by the combination of CAF-enrichment and TGF-β in microphysiologic 3D TNBC models. Results indicated that the absence of PD-1 and TGF-β receptor leads to improved CAR T cells, that induce strong tumour cell lysis, and are protected against the hostile TME. Collectively, the microphysiologic 3D tumour models presented in this work reflect aspects of the hostile TME of solid tumours, engage BLI-based analysis and provide long-term tissue homeostasis. Therefore, they present a defined, scalable, reproducible, standardisable and exportable model for translational research with enhanced predictive value for efficacy testing and candidate selection of cellular immunotherapy, as exemplified by ROR1 CAR T cells. N2 - Die adoptive Immuntherapie mit chimären Antigenrezeptor (CAR) exprimierenden T-Zellen zeigt bei hämatologischen Krebsformen eine hohe Wirksamkeit. Bisher konnte dieser Erfolg für solide Tumore nicht erreicht werden. Im Gegensatz zu hämatologischen Krebsformen zeigen solide Tumore eine feindliche Tumormikroumgebung (TME), die zusätzliche Herausforderungen für die Erlangung kurativer Effekte und konsistenter Therapieergebnisse darstellen. Diese Herausforderungen äußern sich in physikalischen und immunologischen Barrieren, welche die Wirksamkeit der CAR-T-Zellen abschwächt. Zur präklinischen Testung neuartiger zellulärer Immuntherapien werden hauptsächlich 2D-Zellkulturen und Tierstudien durchgeführt. 2D-Zellkulturexperimente eignen sich vor allem für Wirksamkeitsanalysen, während Tierstudien Aufschluss über die Toxizität in-vivo geben können. Allerdings kann die 2D-Zellkultur die Komplexität der in-vivo Situation nicht vollständig widerspiegeln, da die Zellen ohne Verankerung an einer Matrix kultiviert werden und nur kurzfristige Zeiträume abgebildet werden können. Tierstudien bieten einen komplexeren Gewebekontext, wobei Xenografts aber oft das humane Stroma fehlt und die Tumorinokulation meist ektopisch erfolgt. Dies unterstreicht den Bedarf an standardisierbaren und skalierbaren Tumormodellen mit inkorporierten TME-Aspekten, die präklinische Testungen mit erhöhtem Vorhersagewert für den klinischen Erfolg von Immuntherapien ermöglichen. Daher wurden in dieser Arbeit mikrophysiologische 3D-Tumormodelle auf Basis der biologischen SISmuc (Small Intestinal mukosa und Submukosa)-Matrix mit erhaltener Basalmembran eingesetzt und verbessert, um als modulares und vielseitiges Tumormodell für die Wirksamkeitsprüfung von CAR T-Zellen zu dienen. Um eine Vielzahl von Krebsentitäten, TME-Aspekte und Langzeitstabilität abzubilden und um die Ausleseparamter zu verbessern, wurden die Tumormodelle weiter angepasst um skalierbare und standardisierbare definierte mikrophysiologische 3D Tumormodelle zu erhalten. In der vorliegenden Arbeit wurden neue Kulturmodalitäten (semistatische Kultur, Sandwich-Kultur) charakterisiert und etabliert, die zu einer vermehrten und erhöhten Gewebebildung sowie Langzeitstabilität der Modelle führen. Die Anwendung der SISmuc-Matrix wurde auf Sarkom- und Melanom-Modelle erweitert und in den mikrophysiologischen 3D-Tumormodellen wurde ein serielles Biolumineszenz-Intensitäts (BLI)-basiertes In-vivo-Analyse-Verfahren etabliert, welches eine zeiteffiziente Methode für die Qualitätsbewertung der Modelle sowie die Analyse der Therapiewirksamkeit darstellt, welche unabhängig vom Zell-Phänotyp ist. Die Isolation von Krebs-assoziierten Fibroblasten (CAFs) aus Lungen-(Tumor) Gewebe wurde demonstriert und die CAF-Implementierung führte des Weiteren zu stromal-angereicherten mikrophysiologischen 3D-Tumormodellen mit in-vivo vergleichbarer gewebeähnlicher Architektur. CAFs wurden mit Hilfe von CAF-assoziierten Markern (FAP, α-SMA, MMP-2/-9) und einer Zytokinanalyse in den Modellen identifiziert. Diese bestätigte ebenfalls Zytokine, welche mit Angiogenese, Invasion und Immunmodulation assoziiert sind. Zusätzlich wurde eine Endothelzellbarriere sowohl in statischer als auch in der dynamischen Kultur implementiert, wofür ein neuer Bioreaktoraufbau verwendet wurde, welcher insbesondere für die Analyse der Immunzelldiapedesis interessant ist. Studien in mikrophysiologischen 3D-Ewing-Sarkom-Modellen zeigten, dass diese für GD2-spezifische CAR-T-Zellen sensibilisiert werden können. Nach der Erweiterung des Untersuchungsumfangs der mikrophysiologischen 3D-Tumormodelle und deren Verbesserung für die CAR-T-Zell-Testung wurden die Tumormodelle verwendet, um ihre Sensitivität gegenüber unterschiedlich designten Rezeptor-Tyrosinkinase-like Orphan-Rezeptor 1 (ROR1) -spezifischen CAR-T-Zellen zu analysieren. Des Weiteren wurden die Auswirkungen der eingebauten TME-Aspekte auf die CAR-T-Therapie untersucht. ROR1 wurde als geeignetes Ziel für verschiedene maligne Erkrankungen beschrieben, darunter auch triple-negtive-breast-cancer (TNBC) und Lungenkrebs. Daher wurden mikrophysiologische 3D-TNBC- und Lungenkrebs-Modelle für die Testungen aufgebaut. Die Analyse von ROR1-CAR-T-Zellen, die sich in Kostimulation, Spacerlänge und der Ziel-Domäne unterschieden, zeigte, dass die mikrophysiologischen 3D-Tumormodelle eine hohe Sensitivität zur Unterscheidung von suboptimal und optimal designten CARs aufweisen. Dabei induzierte eine Ziel-Domäne mit höherer Affinität eine stärkere Anti-Tumor-Wirkung. Zusätzlich war die Anti-Tumor-Funktion abhängig von der Spacerlänge. In dynamischen mikrophysiologischen 3D-Lungentumormodellen wurde eine Langzeitbehandlung über 14 Tage mit ROR1-CAR-T-Zellen realisiert, die jedoch nicht zu einer vollständigen Entfernung der Tumorzellen führte. Die direkte Injektion von CAR-T-Zellen in TNBC- und Lungentumormodellen induzierte eine starke Anti-Tumorantwort und stellt somit neben der Zugabe über den Medienstrom einen alternativen Applikationsweg dar. Des Weiteren wurde der Einfluss der inkorporierten TME-Aspekte auf die ROR1 CAR T-Zelltherapie untersucht, welche sich durch CAF-Inkorporation und/oder TGF-β-Supplementierung darstellten. Die Zugabe von TGF-β zeigte, dass der spezifische TGF-β-Rezeptor-Inhibitor SD-208 die Funktion der ROR1 CAR T-Zellen verbesserte, da er die immunsuppressiven Effekte von TGF-β in TNBC-Modellen effektiv aufhob. Die Implementierung von CAFs sollte eine physikalische und immunologische Barriere gegenüber ROR1 CAR T-Zellen darstellen, was sich jedoch nicht bestätigte, da die Funktion der ROR1 CAR T-Zellen in Anwesenheit von CAFs in stromal-angereicherten mikrophysiologischen 3D-Lungentumormodellen erhalten blieb. Das Fehlen eines Effekts der CAF-Anreicherung auf die CAR T-Zell-Effektivität deutet auf eine fehlende Komponente für die Entwicklung eines immunsuppressiven TME hin, obwohl immunmodulatorische Zytokine in Co-Kultur-Modellen nachgewiesen wurden. Schließlich wurden verbesserte gen-editierte ROR1-CAR-T-Zellen, denen erschöpfungsassoziierte Gene (PD-1, TGF-β-Rezeptor oder beide) fehlten, durch die Kombination von CAF-Anreicherung und TGF-β in mikrophysiologischen 3D-TNBC-Modellen herausgefordert. Die Ergebnisse zeigten, dass ROR1 CAR T Zellen ohne PD-1 und TGF-β-Rezeptor überlegen sind, eine starke Tumorzell-Lyse induzieren und vor der feindlichen TME geschützt sind. Zusammenfassend spiegeln die in dieser Arbeit vorgestellten mikrophysiologischen 3D-Tumormodelle Aspekte der feindlichen TME solider Tumore wider, ermöglichen BLI-basierte Analysen und bieten eine langfristige Gewebehomöostase. Daher stellen sie ein definiertes, skalierbares, reproduzierbares, standardisierbares und exportierbares Modell für die translationale Forschung mit erhöhtem Vorhersagewert dar. Sie können für die Wirksamkeitsprüfung sowie Kandidatenauswahl von zellulären Immuntherapie verwendet werden, was vor allem am Beispiel der ROR1 CAR T-Zellen gezeigt wurde. KW - CAR T cell KW - immunotherapy KW - 3D tumour model KW - solid tumour KW - tumour microenvironment KW - TNBC KW - lung cancer KW - tumour stroma KW - microphysiologic 3D tumour model KW - Immuntherapie KW - Lungenkrebs KW - Stroma KW - Tumormikroumgebung Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276674 ER -