TY - THES A1 - Schulze, Markus T1 - Role of Chronophin for glioma cell migration and invasion T1 - Die Rolle von Chronophin für die Migration und Invasion von Gliomzellen N2 - Abstract Glioblastomas, primary brain tumors, represent a tumor entity with a dismal prognosis and a median survival of only about one year. Invasion into the healthy brain parenchyma contributes substantially to the malignancy of this type of brain tumor. Therefore, a better understanding of the mechanisms promoting the invasive behavior of these brain tumors is needed to identify new therapeutic targets. Cofilin, an actin regulatory protein, has been shown to be an important regulator of the invasive behavior of tumor cells in other types of cancer and the actin cytoskeleton is involved in the formation of a variety of cellular structures important for cell migration and invasion. Cofilin is regulated by phosphorylation on a single residue, serine 3. The aim of this thesis was to examine the role of the cofilin regulatory phosphatase chronophin for glioma cell migration and invasion. First, it was established that chronophin depletion in the cell line GBM6840 leads to an increase in the ratio of phosphorylated cofilin to total cofilin. Higher chronophin levels were correlated with a decrease in F-actin in the cell lines GBM6840 and U87 as measured in an actin spin down assay and in a flow cytometry based assay. Furthermore, it was shown that knockdown of chronophin in two different cell lines, GBM6840 and DBTRG-05-MG, strongly increased their invasiveness in vitro. Expression of human chronophin in the cell line U87 decreased its invasiveness substantially. There was no difference in cell proliferation between GBM6840 and DBTRG-05-MG cells expressing a chronophin targeting shRNA or a control shRNA and U87 cells transfected with an empty vector or a human chronophin encoding plasmid. The increase in invasiveness after chronophin depletion could be correlated with an increase in directionality in cell migration under 2D culture conditions in the cell lines U87 and GBM6840. Moreover, treatment with the ROCK inhibitor Y-27632 decreased directionality in GBM6840 cells under 2D culture conditions and reduced the invasiveness of GBM6840 chronophin shRNA cells back to control levels. Expression of a non-phosphorylatable cofilin mutant, the S3A mutant, was able to reduce invasiveness and to reduce directionality under 2D culture conditions back to control levels in GBM6840 chronophin shRNA cells. This provides important evidence for the involvement of cofilin phosphoregulation in the phenotypes described above. In vivo, when injected into NOD-SCID mice, chronophin depleted cells showed a dramatic growth reduction as compared to control and rescue cells. Transciptomic characterization of GBM6840 cells by microarray analysis and subsequent comparison of the data with microarray profiles of normal brain tissues and different glioma entities identified two specifically chronophin regulated transcripts potentially involved in tumor progression and invasion, MXI1 and EDIL3. Moreover, c-myc was identified as a significantly altered transcription factor after chronophin deregulation based on the number of c-myc target molecules in the microarray dataset. MXI1 is a potential negative regulator of c-myc dependent transcription, and was strongly downregulated after chronophin knockdown in GBM6840. In line with this, the activity of a c-myc reporter plasmid was increased after chronophin depletion in GBM6840 and reduced after chronophin expression in U87 cells. However, the protein level of the c-myc protein was reduced after chronophin depletion in GBM6840. Finally, anaylsis of the expression of proteases known to be important for glioblastoma pathogenesis revealed no major changes in protease expression between chronophin depleted and control cells. Therefore, a comprehensive analysis of chronophin in the context of glioma pathogenesis has been performed in this thesis. It has been shown that chronophin depletion strongly enhanced invasiveness of glioma cells and that it induced transcriptomic changes potentially involved in tumor progression. The proteins regulating cofilin phosphorylation are therefore valuable therapeutic targets for anti-invasive therapy in glioblastomas. Inhibitors for kinases upstream of cofilin, e.g. LIMKs and ROCKs, are available, and might be promising agents for anti-invasive therapy. N2 - Zusammenfassung Glioblastome sind primäre Gehirntumore, die eine besonders schlechte Prognose besitzen und bei denen die mediane Überlebenszeit nur ca. ein Jahr beträgt. Zur Malignität dieses Tumortyps trägt entscheidend das Eindringen der Tumorzellen in das gesunde Hirnparenchym bei. Daher ist es notwendig die molekularen Mechanismen zu verstehen, die diesem Phänomen zu Grunde liegen, um neue therapeutische Zielmoleküle zu identifizieren. Cofilin, ein Protein das das Aktinzytoskellet reguliert, ist in anderen Krebsarten als wichtiger Regulator des invasiven Verhaltens von Zellen bekannt und das Aktinzytoskellet ist an der Bildung einer Vielzahl von zellulären Strukturen beteiligt, die wichtig für die Zellmigration und –invasion sind. Cofilin wird über die Phosphorylierung einer einzigen Aminosäure, des Serin 3, reguliert. Das Ziel dieser Arbeit war es, die Rolle der Cofilin regulatorischen Phosphatase Chronophin für Zellmigration und -invasion zu untersuchen. Zuerst konnte gezeigt werden, dass eine Chronophin Depletion in der Zelllinie GBM6840 zu einer Zunahme des Anteils von P-Cofilin am Gesamtcofilin führt. Ebenso war ein hohes Chronophin Level in den Zelllinien GBM6840 und U87 mit einer Abnahme des F-Actin Levels korreliert, was in einem Aktin spin down Assay als auch mittels Durchflusszytrometrie gemessen werden konnte. Es konnte weiter gezeigt werden, dass eine shRNA vermittelte Depletion des Chronphin zu einer starken Zunahme der Invasivität in den Zelllinien GBM6840 und DBTRG-05-MG in vitro führt. Chronophin Expression in der Zelllinie U87 führte zu einer starken Abnahme der Invasivität. Es gab hingegen keinen Chronophin abhängigen Unterschied in der Proliferation von GBM6840 und DBTRG-05-MG Zellen, die entweder eine Kontroll- oder eine Chronophin gerichtete shRNA exprimierten, sowie keinen zwischen U87 Zellen, die mit einem Leervektor oder einem Chronophin codierenden Konstrukt transfiziert worden waren. Die Zunahme der Invasion nach Chronophin Depletion konnte mit einer Zunahme der Direktionalität der Zellen bei der Migration in einer 2D Umgebung korreliert werden. Desweiteren konnte durch Behandlung mit dem ROCK-Inhibitor Y-27632 in GBM6840 Zellen eine Erniedrigung der Direktionalität bei der Migration in 2D Kultur ebenso erreicht werden, wie eine Reduktion der Invasivität von Chronophin shRNA exprimierenden GBM6840 Zellen auf Kontrollniveau. Die Expression einer nicht-phosphorylierbaren Cofilin Mutante, der S3A Mutante, erniedrigte sowohl die Direktionalität in der 2D Migration als auch die Invasivität von GBM6840 Chronophin shRNA exprimierenden Zellen zurück auf Kontrollniveau. Diese Experimente lieferten wichtige Hinweise darauf, dass die Phosphoregulation von Cofilin ursächlich an der Entstehung der Phänotypen beteiligt war, die nach Chronophin Knockdown beobachtet wurden. In vivo konnte nach Injektion in NOD-SCID Mäuse eine dramatische Wachstumsreduktion der Chronophin depletierten Zellen gemessen werden. Durch Charakterisierung des Transkriptoms der Zelllinie GBM6840 mittels Microarrays und nachfolgender Vergleich der Ergebnisse mit Microarray-Profilen von Normalhirngewebe und verschiedenen Gliomentitäten konnten zwei spezifisch Chronophin abhängig regulierte Transkripte identifiziert werden, MXI1 und EDIL3, die potentiell mit der Progression und Invasivität von Gliomen verknüpft sind. MXI1, ein potentieller negativer Regulator der c-myc abhängigen Transkription, war nach Chronophin Herunterregulation in GBM6840 stark herunterreguliert. In Übereinstimmung mit diesem Befund war die Aktiviät eines c-myc Reporterplasmids nach Chronophin Herunterregulation in GBM6840 erhöht, nach Chronophin Expression in U87 jedoch erniedrigt. Das c-myc Protein selbst wies eine deutliche Reduktion nach Chronophin Depletion in GBM6840 auf. Abschließend wurde die Expression von Proteasen untersucht, für die eine Rolle in der Gliominvasion bekannt ist. Hier wurden jedoch keine größeren Chronophin abhängigen Expressionsunterschiede gefunden. Zusammenfassend gesagt konnte eine umfassende Charakterisierung der Rolle des Chronophin in der Gliompathogenese erreicht werden. Zum einen konnte gezeigt werden, dass Chronophin ein äußerst wichtiger Regulator der Invasion ist, zum anderen dass es zu Chronophin abhängigen transkriptomischen Veränderungen kommt, die potentiell zur Malignisierung des Tumors beitragen. Daher sind die Proteine die die Cofilinphosphorylierung regulieren potentielle therapeutische Zielmoleküle für eine anti-invasive Therapie im Glioblastom. Inhibitoren für die Kinasen, die Regulatoren des Cofilin sind, die ROCK- und LIM-Kinasen, sind verfügbar und stellen möglicherweise vielversprechende Substanzen für die anti-invasive Therapie dar. KW - Zellmigration KW - Chronophin KW - Invasion KW - Glioblastom KW - Gliom KW - PDXP KW - Glioma KW - Glioblastoma KW - Invasion KW - Migration Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-109292 ER - TY - THES A1 - Buckel, Lisa T1 - Evaluating the combination of oncolytic vaccinia virus and ionizing radiation in therapy of preclinical glioma models T1 - Evaluierung der Kombination von onkolytischem Vaccinia Virus und ionisierender Strahlung in vorklinischen Gliomamodellen N2 - Glioblastoma multiforme (GBM) represents the most aggressive form of malignant brain tumors and remains a therapeutically challenge. Intense research in the field has lead to the testing of oncolytic viruses to improve tumor control. Currently, a variety of different oncolytic viruses are being evaluated for their ability to be used in anti-cancer therapy and a few have entered clinical trials. Vaccinia virus, is one of the viruses being studied. GLV-1h68, an oncolytic vaccinia virus engineered by Genelux Corporation, was constructed by insertion of three gene cassettes, RUC-GFP fusion, β-galactosidase and β- glucuronidase into the genome of the LIVP strain. Since focal tumor radiotherapy is a mainstay for cancer treatment, including glioma therapy, it is of clinical relevance to assess how systemically administered oncolytic vaccinia virus could be combined with targeted ionizing radiation for therapeutic gain. In this work we show how focal ionizing radiation (IR) can be combined with multiple systemically delivered oncolytic vaccinia virus strains in murine models of human U-87 glioma. After initial experiments which confirmed that ionizing radiation does not damage viral DNA or alter viral tropism, animal studies were carried out to analyze the interaction of vaccinia virus and ionizing radiation in the in vivo setting. We found that irradiation of the tumor target, prior to systemic administration of oncolytic vaccinia virus GLV-1h68, increased viral replication within the U-87 xenografts as measured by viral reporter gene expression and viral titers. Importantly, while GLV-1h68 alone had minimal effect on U-87 tumor growth delay, IR enhanced GLV-1h68 replication, which translated to increased tumor growth delay and mouse survival in subcutaneous and orthotopic U-87 glioma murine models compared to monotherapy with IR or GLV-1h68. The ability of IR to enhance vaccinia replication was not restricted to the multi-mutated GLV-1h68, but was also seen with the less attenuated oncolytic vaccinia, LIVP 1.1.1. We have demonstrated that in animals treated with combination of ionizing radiation and LIVP 1.1.1 a strong pro-inflammatory tissue response was induced. When IR was given in a more clinically relevant fractionated scheme, we found oncolytic vaccinia virus replication also increased. This indicates that vaccinia virus could be incorporated into either larger hypo-fraction or more conventionally fractionated radiotherapy schemes. The ability of focal IR to mediate selective replication of systemically injected oncolytic vaccinia was demonstrated in a bilateral glioma model. In mice with bilateral U-87 tumors in both hindlimbs, systemically administered oncolytic vaccinia replicated preferentially in the focally irradiated tumor compared to the shielded non- irradiated tumor in the same mouse We demonstrated that tumor control could be further improved when fractionated focal ionizing radiation was combined with a vaccinia virus caring an anti-angiogenic payload targeting vascular endothelial growth factor (VEGF). Our studies showed that following ionizing radiation expression of VEGF is upregulated in U-87 glioma cells in culture. We further showed a concentration dependent increase in radioresistance of human endothelial cells in presence of VEGF. Interestingly, we found effects of vascular endothelial growth factor on endothelial cells were reversible by adding purified GLAF-1 to the cells. GLAF-1 is a single- chain antibody targeting human and murine VEGF and is expressed by oncolytic vaccinia virus GLV-109. In U-87 glioma xenograft murine models the combination of fractionated ionizing radiation with GLV-1h164, a vaccinia virus also targeting VEGF, resulted in the best volumetric tumor response and a drastic decrease in vascular endothelial growth factor. Histological analysis of embedded tumor sections 14 days after viral administration confirmed that blocking VEGF translated into a decrease in vessel number to 30% of vessel number found in control tumors in animals treated with GLV-164 and fractionated IR which was lower than for all other treatment groups. Our experiments with GLV-1h164 and fractionated radiotherapy have shown that in addition to ionizing radiation and viral induced tumor cell destruction we were able to effectively target the tumor vasculature. This was achieved by enhanced viral replication translating in increased levels of GLAF-2 disrupting tumor vessels as well as the radiosensitization of tumor vasculature to IR by blocking VEGF. Our preclinical results have important clinical implications of how focal radiotherapy can be combined with systemic oncolytic viral administration for highly aggressive, locally advanced tumors with the potential, by using a vaccinia virus targeting human vascular endothelial growth factor, to further increase tumor radiation sensitivity by engaging the vascular component in addition to cancer cells. N2 - Glioblastoma multiforme (GBM) verkörpert die aggressivste Form von bösartigen Gehirntumoren und seine Therapie gestaltet sich schwierig. Weitläufige Forschung hat dazu geführt, dass onkolytische Viren zur Verbesserung der Tumorbehandlung untersucht wurden. Gegenwärtig wird eine Vielzahl an verschiedenen onkolytischen Viren untersucht und einige wenige befinden sich bereits in klinischen Studien. Eines der Viren die untersucht werden, ist das Vaccinia-Virus. GLV-1h68, ein onkolytisches Vaccinia- Virus, wurde durch die Einfügung von drei Genkasseten, RUC-GFP Fusion, β- Galaktosidase und β- Glucuronidase in das Genom des LIVP Stammes hergestellt. Da fokale Bestrahlungstherapie aus der Behandlung von Krebs, nicht nur im Falle von Glioblastomen, nicht wegzudenken ist, ist es klinisch relevant, zu untersuchen, wie ein systemisch verabreichtes Vaccinia-Virus mit gezielter ionisierender Strahlung (IR) kombiniert werden könnte, um Therapiechancen zu verbesseren. In dieser Arbeit konnte gezeigt werden, wie gezielte IR mit verschiedenen sytemisch injizierten Vaccinia-Virus Stämmen in einem Mausmodell für humane U-87-Glioma kombiniert wurde. Nachdem einleitende Versuche bestätigten, dass IR die virale Erbinformation nicht beschädigt und auch nicht den viralen Tropismus verändert, wurden Tierstudien durchgeführt, die die Interaktion des Vaccinia-Virus mit Bestrahlungtherapie in vivo untersuchten. Wir konnten zeigen, dass eine vorherige Bestrahlung des Tumors, bevor das GLV-1h68-Virus systemisch injiziert wurde, eine erhöhte viraler Replikation im Tumor zur Folge hatte, wie wir durch gesteigerte virale Titer und Markergenexpression belegen konnten. Von wesentlicher Bedeutung ist, dass eine Verabreichung von ausschliesslich GLV-1h68 einen minimalen Einfluss auf das U-87 Tumorwachstum hatte, während die durch die Bestrahlung ausgelöste erhöhte Vermehrung von Virus im Tumor eine Verzögerung des Tumorwachstums sowie ein verlängertes Überleben von Mäusen mit U-87-Xenografts zur Folge hatte. Die Fähigkeit von IR virale Vermehrung zu erhöhen, wurde auch für das weniger attenuierte LIVP 1.1.1-Virus gezeigt. Wenn die Bestrahlung in einem klinisch relevanten fraktionierten Bestrahlungsschema verabreicht wurde, war virale Replikation ebenfalls erhöht. Dies verdeutlicht, dass das Vaccinia-Virus klinisch entweder in eine Bestrahlung mit einer einzelnen Dosis oder in eine konventionelle fraktionierte Bestrahlung integriert werden kann. Die Fähigkeit von fokaler IR, eine selektive Vermehrung von systemisch injizierten onkolytischen Vaccinia-Viren zu ermöglichen, wurde in einem bilateralen Gliomamausmodell bestätigt. In Mausen mit Tumoren an beiden Hinterbeinen, vermehrte sich das systemisch gespritzte Vaccinia-Virus bevorzugt im bestrahlten Tumor. Wir konnten zeigen, wie die Tumorkontrolle darüber hinaus weiter verbessert werden kann, wenn fraktionierte fokale Bestrahlung mit einem Vaccinia-Virus kombiniert wird, das eine anti-angiogenetische Ladung, die den vaskulaeren endothelialen Wachstumsfaktor (VEGF) inhibiert, exprimiert. Unsere Studien konnten zeigen, dass durch die Bestrahlung von U-87 Gliomazellen eine Hochregulation von VEGF-Expression ausgelöst wurde, die Radioresistenz von Endothelzellen konzentrationsabhängig induzierte. Wir konnten zeigen, dass die durch VEGF verursache Radioresistenz umkehrbar ist, wenn zusätzlich aufgereinigtes GLAF-1, einen Vaccinia Virus exprimierten Antikörper, zu den Zellen gegeben wurde. In einem Mausmodell zeigte die Kombination aus fraktionierter Bestrahlung und GLV-1h164, ein Vaccinia-Virus, das ebenfalls einen VEGF Antikörper mit Ähnlichkeit zu GLAF-1 exprimiert, resultierte in der stärksten volumetrischen Tumorantwort. Es wurde ebenfalls eine drastische Abnahme an VEGF im Tumor bereits 3 Tagen nach Virus- Injektion nachgewiesen. Histologische Analyse bestätigte, dass die Blockade von VEGF eine Erniedrigung der Anzahl von Tumorblutgefäßen, zu 30% von Kontrolltumoren, zur Folge hatte. Dieser Wert war niedriger als in allen anderen Behandlungsgruppen. Unsere Versuche mit fraktionierter Bestrahlung und GLV-1h164 konnten zeigen, dass zusätzlich zu der durch Virus und Bestrahlung ausgelösten Tumorzellzerstörung, eine effiziente Degeneration der Tumorblutgefäße möglich war. Dies wurde durch eine erhöhte Virus-Vermehrung als Folge der Bestrahlung, sowie durch Sensitiveren der tumoralen Endothelzellen durch Blockierung von VEGF-A erreicht. Die Ergebnisse, die in dieser Arbeit zeigen, wie fokale Bestrahlungstherapie mit systemisch verabreichten onkolytische Vaccinia-Viren für aggressive, fortgeschrittene Tumore kombiniert werden kann. Es ist denkbar, dass die Tumortherapie weiter verbessert werden kann, wenn ein Vaccinia-Virus benutzt wird, das sich zusätzlich gegen VEGF richtet, so werden zu den Krebszellen zusätzlich Tumorblutgefäße in die Therapie miteinbezogen, um die Sensitivität von Endothelzellen gegen Bestrahlung weiter zu erhöhen. KW - Gliom KW - Vaccinia-Virus KW - Strahlentherapie KW - Kombinationstherapie KW - onkolytische Virotherapie KW - Glioma KW - vaccinia virus KW - ionizing radiation KW - combination therapy KW - oncolytic virotherapy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85309 ER -