TY - THES A1 - Schwab, Nicholas T1 - The importance of CD8\(^+\) T cells and antigen-presenting cells in the immune reaction of primary inflammatory versus degenerative diseases T1 - Die Bedeutung CD8\(^+\) T-Zellen und Antigen-präsentierender Zellen in der Immunreaktion primär inflammatorischer gegenüber degenerativen Erkrankungen N2 - The bidirectional influence of parenchymal cells and cells of the immune system, especially of antigen-presenting and CD8\(^+\) T cells, in situations of putative auto- immune pathogenicity and degeneration was the main topic of this thesis. In the first part, the influence of human muscle cells on antigen-presenting cells was investigated. In inflammatory myopathies prominent infiltrates of immune cells containing T cells and antigen-presenting cells like macrophages and dendritic cells are present. The hypothesis was that human myoblasts have an inhibiting influence on these antigen-presenting cells under homeostatic conditions. A dysfunction or impairment under inflammatory circumstances might contribute to the development of myopathic conditions. The surface analysis of dendritic cells cocultured with myoblasts showed that immature dendritic cells could be driven into a reversible semi- mature state with significantly elevated levels of CD80. These dendritic cells were additionally characterized by their inhibiting function on T-cell proliferation. It was also shown that the lysates of healthy myoblasts could strongly enhance the phagocytic ability of macrophages, which could help with muscle regeneration and which might be disturbed in myositis patients. The second part of this thesis was about the clonal specificity of CD8\(^+\) T cells in a mouse model with genetically induced over-expression of PLP in oligodendrocytes. Here, we could show that the cytotoxic T lymphocytes, which had previously been shown to be pathogenic, were clonally expanded in the CNS of the transgenic mice. The amino acid sequences of the corresponding receptor chains were not identical, yet showed some similarities, which could mean that these clones recognize similar antigens (or epitopes of the same antigen). The knockout of PD-1 in this setting allowed for an analysis of the importance of tissue immune regulation. It became evident that the absence of PD-1 induced a larger number of clonal expansions in the CNS, hinting towards a reduced threshold for clonal disturbance and activation in these T cells. The expansions were, however, not pathogenic by themselves. Only in the presence of tissue damage and an antigenic stimulus (in our case the overexpression of PLP), the PD-1 limitation exacerbated the immune pathogenicity. Therefore, only in the presence of a “tissue damage signal”, the dyshomeostasis of T cells lacking PD-1 achieved high pathogenetic relevance. Finally, we investigated the pathogenetic role of CD8 T cells in Rasmussen encephalitis, a rare and chronic neurological disease mainly affecting children. The analysis of the T-cell receptor repertoire in Rasmussen encephalitis patients in the peripheral CD4\(^+\) and CD8\(^+\) T-cell compartments as well as the brain revealed the involvement of T cells in the pathogenicity of this disease. Many clonal expansions in the brain matched CD8\(^+\) T-cell expansions in the periphery on the sequence level. These putatively pathogenic clones could be visualized by immunohistochemistry in the brain and were found in close proximity to astrocytes and neurons. Additionally, the expanded clones could be found in the periphery of patients for at least one year. N2 - Der Einfluss von Parenchymzellen auf Immunzellen und umgekehrt, im Besonderen von Antigen-präsentierenden Zellen und CD8\(^+\) T-Zellen, im Zusammenhang von auto- immuner Pathogenese und Degeneration war das Hauptthema dieser Dissertation. Im ersten Teil wurde der Einfluss menschlicher Muskelzellen auf Antigen- präsentierende Zellen untersucht. In entzündlichen Myopathien kommt es zu massiven Infiltraten von Immunzellen, die T-Zellen und auch Antigen-präsentierende Zellen wie Makrophagen und dendritische Zellen enthalten. Die Hypothese war, dass menschliche Myoblasten einen hemmenden Einfluss auf die Antigen-präsentierenden Zellen unter homöostatischen Bedingungen haben. Eine Störung dieses Einflusses oder eine Beeinträchtigung unter entzündlichen Rahmenbedingungen könnte eventuell zur Entwicklung eines myopathischen Zustands beitragen. In der Oberflächenanalyse der dendritischen Zellen, die mit Myoblasten kultiviert wurden, zeigte sich, dass unreife dendritische Zellen in einen halb-reifen Zustand versetzt werden konnten, der sich beispielsweise durch stark erhöhte CD80 Expression kennzeichnet. Diese dendritischen Zellen wurden weiterhin charakterisiert über ihre hemmende Funktion auf die T-Zell Proliferation. Außerdem wurde gezeigt, dass Zelllysate gesunder Myoblasten die Phagozytoserate von Makrophagen enorm verstärken, was die Regeneration des Muskelgewebes erhöhen und möglicherweise in Myositispatienten gestört sein könnte. Im zweiten Teil der Dissertation ging es um die klonale Spezifität von CD8\(^+\) T-Zellen in einem Mausmodell mit genetisch induzierter Überexpression von PLP in Oligodendrozyten. Hier konnte gezeigt werden, dass die zytotoxischen T-Zellen, deren Pathogenität Gegenstand früherer Arbeiten war, im ZNS der transgenen Mäuse klonal expandiert waren. Die Aminosäuresequenzen der TCRβ Kette der expandierten Klone waren nicht identisch, zeigten jedoch einige Ähnlichkeiten, die darauf hinweisen könnten, dass diese Klone ähnliche Antigene (oder Epitope des gleichen Antigens) erkennen. Die genetisch induzierte Abwesenheit von PD-1 ermöglichte es, in diesem Zusammenhang den Einfluss von spezifischer Immunregulation im Gewebe zu untersuchen. Es zeigte sich, dass die Deletion von PD-1 eine erhöhte Anzahl von klonalen Expansionen im ZNS der Mäuse erzeugte, was auf eine herabgesetzte Schwelle für klonale Störungen und Aktivierung schließen lässt. Diese Expansionen 
 waren jedoch für sich genommen nicht pathogen. Nur in der Anwesenheit eines Gewebeschadens und eines zusätzlicher Antigenstimulus (in unserem Fall in Form der PLP Überexpression) konnte man die erhöhte Pathogenität durch die PD-1 Deletion erkennen. Deswegen erreichten die PD-1 deletierten T-Zellen nur in der Gegenwart eines „Gewebeschaden-Signals“ hohe pathogenetische Relevanz. Schließlich untersuchten wir die pathogenetische Rolle von CD8\(^+\) T-Zellen in der Rasmussen Enzephalitis, einer seltenen, chronischen Erkrankung des Gehirns, die hauptsächlich in Kindern vorkommt. Die Analyse des T-Zell-Rezeptor Repertoires in Rasmussen Enzephalitis Patienten in peripheren CD4\(^+\) und CD8\(^+\) T-Zell Populationen und im Gehirn zeigte die Beteiligung von T-Zellen in der Pathogenese dieser Krankheit auf. Viele klonale Expansionen waren zwischen Gehirn und der peripheren CD8\(^+\) Population bis hin zur Aminosäuresequenz identisch. Diese vermutlich pathogenen Klone konnten in Gehirnbiopsien von Rasmussenpatienten histochemisch nachgewiesen werden und wurden in enger Nachbarschaft zu Astrozyten und Neuronen gefunden. Zusätzlich konnten diese expandierten Kone in der Peripherie von Patienten für die beobachteten Zeiträume (mindestens ein Jahr) nachgewiesen werden. KW - T-Lymphozyt KW - Entzündung KW - Degeneration KW - Immunsystem KW - Rasmussen-Syndrom KW - T lymphocyte KW - inflammation KW - degeneration KW - immune system KW - rasmussen encephalitis Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37330 ER - TY - JOUR A1 - Rittner, Heike Lydia A1 - Hackel, Dagmar A1 - Pflücke, Diana A1 - Neumann, Annick A1 - Viebahn, Johannes A1 - Mousa, Shaaban A1 - Wischmeyer, Erhard A1 - Roewer, Norbert A1 - Brack, Alexander T1 - The Connection of Monocytes and Reactive Oxygen Species in Pain JF - PLoS ONE N2 - The interplay of specific leukocyte subpopulations, resident cells and proalgesic mediators results in pain in inflammation. Proalgesic mediators like reactive oxygen species (ROS) and downstream products elicit pain by stimulation of transient receptor potential (TRP) channels. The contribution of leukocyte subpopulations however is less clear. Local injection of neutrophilic chemokines elicits neutrophil recruitment but no hyperalgesia in rats. In meta-analyses the monocytic chemoattractant, CCL2 (monocyte chemoattractant protein-1; MCP-1), was identified as an important factor in the pathophysiology of human and animal pain. In this study, intraplantar injection of CCL2 elicited thermal and mechanical pain in Wistar but not in Dark Agouti (DA) rats, which lack p47phox, a part of the NADPH oxidase complex. Inflammatory hyperalgesia after complete Freund's adjuvant (CFA) as well as capsaicin-induced hyperalgesia and capsaicin-induced current flow in dorsal root ganglion neurons in DA were comparable to Wistar rats. Macrophages from DA expressed lower levels of CCR2 and thereby migrated less towards CCL2 and formed limited amounts of ROS in vitro and 4-hydroxynonenal (4-HNE) in the tissue in response to CCL2 compared to Wistar rats. Local adoptive transfer of peritoneal macrophages from Wistar but not from DA rats reconstituted CCL2-triggered hyperalgesia in leukocyte-depleted DA and Wistar rats. A pharmacological stimulator of ROS production (phytol) restored CCL2-induced hyperalgesia in vivo in DA rats. In Wistar rats, CCL2-induced hyperalgesia was completely blocked by superoxide dismutase (SOD), catalase or tempol. Likewise, inhibition of NADPH oxidase by apocynin reduced CCL2-elicited hyperalgesia but not CFA-induced inflammatory hyperalgesia. In summary, we provide a link between CCL2, CCR2 expression on macrophages, NADPH oxidase, ROS and the development CCL2-triggered hyperalgesia, which is different from CFA-induced hyperalgesia. The study further supports the impact of CCL2 and ROS as potential targets in pain therapy. KW - analysis of variance KW - chemokines KW - hyperalgesia KW - inflammation KW - macrophages KW - monocytes KW - white blood cells KW - wistar rats Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96669 ER - TY - JOUR A1 - Groh, Janos A1 - Hörner, Michaela A1 - Martini, Rudolf T1 - Teriflunomide attenuates neuroinflammation-related neural damage in mice carrying human PLP1 mutations JF - Journal of Neuroinflammation N2 - Background: Genetically caused neurological disorders of the central nervous system (CNS) are mostly characterized by poor or even fatal clinical outcome and few or no causative treatments are available. Often, these disorders are associated with low-grade, disease-promoting inflammation, another feature shared by progressive forms of multiple sclerosis (PMS). We previously generated two mouse lines carrying distinct mutations in the oligodendrocytic PLP1 gene that have initially been identified in patients diagnosed with MS. These mutations cause a loss of PLP function leading to a histopathological and clinical phenotype common to both PMS and genetic CNS disorders, like hereditary spastic paraplegias. Importantly, neuroinflammation promotes disease progression in these models, suggesting that pharmacological modulation of inflammation might ameliorate disease outcome. Methods: We applied teriflunomide, an approved medication for relapsing-remitting MS targeting activated T-lymphocytes, in the drinking water (10 mg/kg body weight/day). Experimental long-term treatment of PLP mutant mice was non-invasively monitored by longitudinal optical coherence tomography and by rotarod analysis. Immunomodulatory effects were subsequently analyzed by flow cytometry and immunohistochemistry and treatment effects regarding neural damage, and neurodegeneration were assessed by histology and immunohistochemistry. Results: Preventive treatment with teriflunomide attenuated the increase in number of CD8+ cytotoxic effector T cells and fostered the proliferation of CD8+ CD122+ PD-1+ regulatory T cells in the CNS. This led to an amelioration of axonopathic features and neuron loss in the retinotectal system, also reflected by reduced thinning of the innermost retinal composite layer in longitudinal studies and ameliorated clinical outcome upon preventive long-term treatment. Treatment of immune-incompetent PLP mutants did not provide evidence for a direct, neuroprotective effect of the medication. When treatment was terminated, no rebound of neuroinflammation occurred and histopathological improvement was preserved for at least 75 days without treatment. After disease onset, teriflunomide halted ongoing axonal perturbation and enabled a recovery of dendritic arborization by surviving ganglion cells. However, neither neuron loss nor clinical features were ameliorated, likely due to already advanced neurodegeneration before treatment onset. Conclusions: We identify teriflunomide as a possible medication not only for PMS but also for inflammation-related genetic diseases of the nervous system for which causal treatment options are presently lacking. KW - axonal degeneration KW - inflammation KW - proteolipid protein KW - T-lymphocytes KW - teriflunomide Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176524 VL - 15 IS - 194 ER - TY - JOUR A1 - Saint Fleur-Lominy, Shella A1 - Maus, Mate A1 - Vaeth, Martin A1 - Lange, Ingo A1 - Zee, Isabelle A1 - Suh, David A1 - Liu, Cynthia A1 - Wu, Xiaojun A1 - Tikhonova, Anastasia A1 - Aifantis, Iannis A1 - Feske, Stefan T1 - STIM1 and STIM2 Mediate Cancer-Induced Inflammation in T Cell Acute Lymphoblastic Leukemia JF - Cell Reports N2 - T cell acute lymphoblastic leukemia (T-ALL) is commonly associated with activating mutations in the NOTCH1 pathway. Recent reports have shown a link between NOTCH1 signaling and intracellular Ca2+ homeostasis in T-ALL. Here, we investigate the role of store-operated Ca2+ entry (SOCE) mediated by the Ca2+ channel ORAI1 and its activators STIM1 and STIM2 in T-ALL. Deletion of STIM1 and STIM2 in leukemic cells abolishes SOCE and significantly prolongs the survival of mice in a NOTCH1-dependent model of T-ALL. The survival advantage is unrelated to the leukemic cell burden but is associated with the SOCE-dependent ability of malignant T lymphoblasts to cause inflammation in leukemia-infiltrated organs. Mice with STIM1/STIM2-deficient T-ALL show a markedly reduced necroinflammatory response in leukemia-infiltrated organs and downregulation of signaling pathways previously linked to cancer-induced inflammation. Our study shows that leukemic T lymphoblasts cause inflammation of leukemia-infiltrated organs that is dependent on SOCE. KW - T cell acute lymphoblastic leukemia KW - T-ALL KW - Notch1 KW - STIM1 KW - STIM2 KW - calcium KW - Ca2+ KW - CRAC KW - channel KW - inflammation KW - interferon KW - anemia KW - macrophages Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227259 VL - 24 IS - 11 ER - TY - JOUR A1 - Koeniger, Tobias A1 - Kuerten, Stefanie T1 - Splitting the "unsplittable": Dissecting resident and infiltrating macrophages in experimental autoimmune encephalomyelitis JF - International Journal of Molecular Sciences N2 - Macrophages predominate the inflammatory landscape within multiple sclerosis (MS) lesions, not only regarding cellularity but also with respect to the diverse functions this cell fraction provides during disease progression and remission. Researchers have been well aware of the fact that the macrophage pool during central nervous system (CNS) autoimmunity consists of a mixture of myeloid cells. Yet, separating these populations to define their unique contribution to disease pathology has long been challenging due to their similar marker expression. Sophisticated lineage tracing approaches as well as comprehensive transcriptome analysis have elevated our insight into macrophage biology to a new level enabling scientists to dissect the roles of resident (microglia and non-parenchymal macrophages) and infiltrating macrophages with unprecedented precision. To do so in an accurate way, researchers have to know their toolbox, which has been filled with diverse, discriminating approaches from decades of studying neuroinflammation in animal models. Every method has its own strengths and weaknesses, which will be addressed in this review. The focus will be on tools to manipulate and/or identify different macrophage subgroups within the injured murine CNS. KW - CNS KW - distinction KW - experimental autoimmune encephalomyelitis KW - inflammation KW - macrophages KW - markers KW - microglia KW - monocytes Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285067 SN - 1422-0067 VL - 18 IS - 10 ER - TY - JOUR A1 - Cardani, Diego A1 - Sardi, Claudia A1 - La Ferla, Barbara A1 - D'Orazio, Guiseppe A1 - Sommariva, Michele A1 - Marcucci, Fabrizio A1 - Olivero, Daniela A1 - Tagliabue, Elda A1 - Koepsell, Hermann A1 - Nicotra, Francesco A1 - Balsari, Andrea A1 - Rumio, Christiano T1 - Sodium glucose cotransporter 1 ligand BLF501 as a novel tool for management of gastrointestinal mucositis JF - Molecular Cancer N2 - Background: Recent studies demonstrated that engagement of sodium glucose transporter 1 (SGLT-1) by orally administered D-glucose protects the intestinal mucosa from lipopolysaccharide (LPS)-induced injury. We tested whether SGLT-1 engagement might protect the intestinal mucosa from doxorubicin (DXR)- and 5-fluorouracil (5-FU)-induced injury in animal models mimicking acute or chronic mucositis. Methods: Mice were treated intraperitoneally with DXR, alone or in combination with 5-FU, and orally with BLF501, a glucose-derived synthetic compound with high affinity for SGLT-1. Intestinal mucosal epithelium integrity was assessed by histological analysis, cellular proliferation assays, real-time PCR gene expression assays and Western blot assays. Student's t-test (paired two-tailed) and X-2 analyses were used for comparisons between groups. Differences were considered significant at p < 0.05. Results: BLF501 administration in mice treated with DXR and/or 5-FU decreased the injuries to the mucosa in terms of epithelial integrity and cellular proliferative ability. Co-treatment with BLF501 led to a normal expression and distribution of both zonula occludens-1 (ZO-1) and beta-catenin, which were underexpressed after treatment with either chemotherapeutic agent alone. BLF501 administration also restored normal expression of caspase-3 and ezrin/radixin/moesin (ERM), which were overexpressed after treatment with DXR and 5-FU. In SGLT1-/- mice, BLF501 had no detectable effects. BLF501 administration in wild-type mice with growing A431 tumors did not modify antitumor activity of DXR. Conclusions: BLF501-induced protection of the intestinal mucosa is a promising novel therapeutic approach to reducing the severity of chemotherapy-induced mucositis. KW - apoptosis KW - prevention KW - doxorubicin KW - cancer KW - gastrointestinal mucositis KW - SGLT-1 KW - synthetic D-glucose analogy KW - chemotherapy KW - inflammation KW - clinical practice guidelines KW - intestinal mucositis KW - epithelial cells KW - oral mucositis KW - gene-expression Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117352 SN - 1476-4598 VL - 13 IS - 23 ER - TY - JOUR A1 - Magliocca, Giorgia A1 - Mone, Pasquale A1 - Di Iorio, Biagio Raffaele A1 - Heidland, August A1 - Marzocco, Stefania T1 - Short-chain fatty acids in Chronic Kidney Disease: focus on inflammation and oxidative stress regulation JF - International Journal of Molecular Sciences N2 - Chronic Kidney Disease (CKD) is a debilitating disease associated with several secondary complications that increase comorbidity and mortality. In patients with CKD, there is a significant qualitative and quantitative alteration in the gut microbiota, which, consequently, also leads to reduced production of beneficial bacterial metabolites, such as short-chain fatty acids. Evidence supports the beneficial effects of short-chain fatty acids in modulating inflammation and oxidative stress, which are implicated in CKD pathogenesis and progression. Therefore, this review will provide an overview of the current knowledge, based on pre-clinical and clinical evidence, on the effect of SCFAs on CKD-associated inflammation and oxidative stress. KW - chronic kidney disease KW - short-chain fatty acids KW - oxidative stress KW - inflammation KW - uremic toxins Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284587 SN - 1422-0067 VL - 23 IS - 10 ER - TY - JOUR A1 - Freitag‐Wolf, Sandra A1 - Munz, Matthias A1 - Junge, Olaf A1 - Graetz, Christian A1 - Jockel‐Schneider, Yvonne A1 - Staufenbiel, Ingmar A1 - Bruckmann, Corinna A1 - Lieb, Wolfgang A1 - Franke, Andre A1 - Loos, Bruno G. A1 - Jepsen, Søren A1 - Dommisch, Henrik A1 - Schaefer, Arne S. T1 - Sex‐specific genetic factors affect the risk of early‐onset periodontitis in Europeans JF - Journal of Clinical Periodontology N2 - Aims Various studies have reported that young European women are more likely to develop early‐onset periodontitis compared to men. A potential explanation for the observed variations in sex and age of disease onset is the natural genetic variation within the autosomal genomes. We hypothesized that genotype‐by‐sex (G × S) interactions contribute to the increased prevalence and severity. Materials and methods Using the case‐only design, we tested for differences in genetic effects between men and women in 896 North‐West European early‐onset cases, using imputed genotypes from the OmniExpress genotyping array. Population‐representative 6823 controls were used to verify that the interacting variables G and S were uncorrelated in the general population. Results In total, 20 loci indicated G × S associations (P < 0.0005), 3 of which were previously suggested as risk genes for periodontitis (ABLIM2, CDH13, and NELL1). We also found independent G × S interactions of the related gene paralogs MACROD1/FLRT1 (chr11) and MACROD2/FLRT3 (chr20). G × S‐associated SNPs at CPEB4, CDH13, MACROD1, and MECOM were genome‐wide‐associated with heel bone mineral density (CPEB4, MECOM), waist‐to‐hip ratio (CPEB4, MACROD1), and blood pressure (CPEB4, CDH13). Conclusions Our results indicate that natural genetic variation affects the different heritability of periodontitis among sexes and suggest genes that contribute to inter‐sex phenotypic variation in early‐onset periodontitis. KW - alveolar bone loss KW - gene × sex interaction KW - genetic risk KW - heritability KW - inflammation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262445 VL - 48 IS - 11 SP - 1404 EP - 1413 ER - TY - JOUR A1 - Hofmann, Sigrun Ruth A1 - Böttger, Fanny A1 - Range, Ursula A1 - Lück, Christian A1 - Morbach, Henner A1 - Girschick, Hermann Joseph A1 - Suttorp, Meinolf A1 - Hedrich, Christian Michael T1 - Serum interleukin-6 and CCL11/eotaxin may be suitable biomarkers for the diagnosis of chronic nonbacterial osteomyelitis JF - Frontiers in Pediatrics N2 - Objectives: Chronic recurrent multifocal osteomyelitis (CRMO), the most severe form of chronic nonbacterial osteomyelitis (CNO), is an autoinflammatory bone disorder. In the absence of diagnostic criteria or biomarkers, CNO/CRMO remains a diagnosis of exclusion. The aim of this study was to identify biomarkers for diagnosing multifocal disease (CRMO). Study design: Sera from 71 pediatric CRMO patients, 11 patients with osteoarticular infections, 62 patients with juvenile idiopathic arthritis (JIA), 7 patients with para-infectious or reactive arthritis, and 43 patients with acute leukemia or lymphoma, as well as 59 healthy individuals were collected. Multiplex analysis of 18 inflammation- and/or bone remodeling-associated serum proteins was performed. Statistical analysis included univariate ANOVA, discriminant analysis, univariate receiver operating characteristic (ROC) analysis, and logistic regression analyses. Results: For 14 of 18 blood serum proteins, significant differences were determined between CRMO patients, at least one alternative diagnosis, or healthy controls. Multi-component discriminant analysis delivered five biomarkers (IL-6, CCL11/eotaxin, CCL5/RANTES, collagen Iα, sIL-2R) for the diagnosis of CRMO. ROC analysis allowed further reduction to a core set of 2 biomarkers (CCL11/eotaxin, IL-6) that are sufficient to discern between CRMO, healthy controls, and alternative diagnoses. Conclusion: Serum biomarkers CCL11/eotaxin and IL-6 differentiate between patients with CRMO, healthy controls, and alternative diagnoses (leukemia and lymphoma, osteoarticular infections, para-infectious arthritis, and JIA). Easily accessible biomarkers may aid in diagnosing CRMO. Further studies testing biomarkers in larger unrelated cohorts are warranted. KW - medicine KW - chronic nonbacterial osteomyelitis KW - chronic recurrent multifocal osteomyelitis KW - inflammation KW - biomarker KW - autoinflammation KW - diagnosis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172744 VL - 5 ER - TY - JOUR A1 - Loeffler, Claudia A1 - Loeffler, Jürgen A1 - Kobsar, Anna A1 - Speer, Christian P. A1 - Eigenthaler, Martin T1 - Septic Vs Colonizing Group B Streptococci Differentially Regulate Inflammation and Apoptosis in Human Coronary Artery Endothelial Cells - a Pilot Study JF - Journal of Pediatrics and Neonatal Care N2 - In this pilot study, we exemplify differences between a septic and a colonizing GBS strain during their interaction with Endothelial Cells by evaluating cytokine levels, surface and apoptosis-related molecules. These preliminary results indicate that in vitro infection using an exemplary septic GBS strain results in diminished activation of the innate immune response. KW - streptococci KW - apoptosis KW - inflammation KW - endothelial cells KW - innate immunity KW - early onset sepsis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125596 VL - 2 IS - 2 ER -