TY - JOUR A1 - Buechner, Claudia N. A1 - Maiti, Atanu A1 - Drohat, Alexander C. A1 - Tessmer, Ingrid T1 - Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging JF - Nucleic Acids Research N2 - The ability of DNA glycosylases to rapidly and efficiently detect lesions among a vast excess of nondamaged DNA bases is vitally important in base excision repair (BER). Here, we use singlemolecule imaging by atomic force microscopy (AFM) supported by a 2-aminopurine fluorescence base flipping assay to study damage search by human thymine DNA glycosylase (hTDG), which initiates BER of mutagenic and cytotoxic G:T and G:U mispairs in DNA. Our data reveal an equilibrium between two conformational states of hTDG-DNA complexes, assigned as search complex (SC) and interrogation complex (IC), both at target lesions and undamaged DNA sites. Notably, for both hTDG and a second glycosylase, hOGG1, which recognizes structurally different 8-oxoguanine lesions, the conformation of the DNA in the SC mirrors innate structural properties of their respective target sites. In the IC, the DNA is sharply bent, as seen in crystal structures of hTDG lesion recognition complexes, which likely supports the base flipping required for lesion identification. Our results support a potentially general concept of sculpting of glycosylases to their targets, allowing them to exploit the energetic cost of DNA bending for initial lesion sensing, coupled with continuous (extrahelical) base interrogation during lesion search by DNA glycosylases. KW - Escherichia coli AlkA KW - undamaged DNA KW - substrate recognition KW - intrahelical lesion KW - uracil binding KW - structural basis KW - mismatch recognition KW - damaged DNA KW - base excision repair Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148795 VL - 43 IS - 5 ER -