TY - JOUR A1 - Kouhestani, Dina A1 - Geis, Maria A1 - Alsouri, Saed A1 - Bumm, Thomas G. P. A1 - Einsele, Hermann A1 - Sauer, Markus A1 - Stuhler, Gernot T1 - Variant signaling topology at the cancer cell–T-cell interface induced by a two-component T-cell engager JF - Cellular & Molecular Immunology N2 - No abstract available. KW - immunotherapy KW - tumour immunology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241189 VL - 18 ER - TY - JOUR A1 - Chopra, Martin A1 - Lang, Isabell A1 - Salzmann, Steffen A1 - Pachel, Christina A1 - Kraus, Sabrina A1 - Bäuerlein, Carina A. A1 - Brede, Christian A1 - Jordán Garrote, Ana-Laura A1 - Mattenheimer, Katharina A1 - Ritz, Miriam A1 - Schwinn, Stefanie A1 - Graf, Carolin A1 - Schäfer, Viktoria A1 - Frantz, Stefan A1 - Einsele, Hermann A1 - Wajant, Harald A1 - Beilhack, Andreas T1 - Tumor Necrosis Factor Induces Tumor Promoting and Anti-Tumoral Effects on Pancreatic Cancer via TNFR1 JF - PLoS ONE N2 - Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF) in health and disease. In particular, TNF was shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1, which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5%), TNF deficient (12.5%), and TNFR2 deficient mice (22.2%) were able to fully reject the tumor within two weeks. Pancreatic tumors in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4+ T cells and CD4+ forkhead box P3 (FoxP3)+ regulatory T cells (Treg) but reduced numbers of CD8+ T cells. These alterations were further accompanied by transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal CD8+ T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however, which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to determine finally the overall outcome. KW - Bioluminescence KW - cancer treatment KW - cell staining KW - cytokines KW - immune cells KW - metastasis KW - regulatory T cells KW - T cells Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97246 ER - TY - JOUR A1 - Dahlhoff, Julia A1 - Manz, Hannah A1 - Steinfatt, Tim A1 - Delgado-Tascon, Julia A1 - Seebacher, Elena A1 - Schneider, Theresa A1 - Wilnit, Amy A1 - Mokhtari, Zeinab A1 - Tabares, Paula A1 - Böckle, David A1 - Rasche, Leo A1 - Martin Kortüm, K. A1 - Lutz, Manfred B. A1 - Einsele, Hermann A1 - Brandl, Andreas A1 - Beilhack, Andreas T1 - Transient regulatory T-cell targeting triggers immune control of multiple myeloma and prevents disease progression JF - Leukemia N2 - Multiple myeloma remains a largely incurable disease of clonally expanding malignant plasma cells. The bone marrow microenvironment harbors treatment-resistant myeloma cells, which eventually lead to disease relapse in patients. In the bone marrow, CD4\(^{+}\)FoxP3\(^{+}\) regulatory T cells (Tregs) are highly abundant amongst CD4\(^{+}\) T cells providing an immune protective niche for different long-living cell populations, e.g., hematopoietic stem cells. Here, we addressed the functional role of Tregs in multiple myeloma dissemination to bone marrow compartments and disease progression. To investigate the immune regulation of multiple myeloma, we utilized syngeneic immunocompetent murine multiple myeloma models in two different genetic backgrounds. Analyzing the spatial immune architecture of multiple myeloma revealed that the bone marrow Tregs accumulated in the vicinity of malignant plasma cells and displayed an activated phenotype. In vivo Treg depletion prevented multiple myeloma dissemination in both models. Importantly, short-term in vivo depletion of Tregs in mice with established multiple myeloma evoked a potent CD8 T cell- and NK cell-mediated immune response resulting in complete and stable remission. Conclusively, this preclinical in-vivo study suggests that Tregs are an attractive target for the treatment of multiple myeloma. KW - Multiple myeloma KW - transient regulatory T-cell targeting KW - immune control Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-271787 SN - 1476-5551 VL - 36 IS - 3 ER - TY - JOUR A1 - Zhou, Xiang A1 - Rasche, Leo A1 - Kortüm, K. Martin A1 - Danhof, Sophia A1 - Hudecek, Michael A1 - Einsele, Hermann T1 - Toxicities of Chimeric Antigen Receptor T Cell Therapy in Multiple Myeloma: An Overview of Experience From Clinical Trials, Pathophysiology, and Management Strategies JF - Frontiers in Immunology N2 - In the last few years, monoclonal antibodies (mAbs) such as elotuzumab and daratutumab have brought the treatment of multiple myeloma (MM) into the new era of immunotherapy. More recently, chimeric antigen receptor (CAR) modified T cell, a novel cellular immunotherapy, has been developed for treatment of relapsed/refractory (RR) MM, and early phase clinical trials have shown promising efficacy of CAR T cell therapy. Many patients with end stage RRMM regard CAR T cell therapy as their “last chance” and a “hope of cure”. However, severe adverse events (AEs) and even toxic death related to CAR T cell therapy have been observed. The management of AEs related to CAR T cell therapy represents a new challenge, as the pathophysiology is not fully understood and there is still no well-established standard of management. With regard to CAR T cell associated toxicities in MM, in this review, we will provide an overview of experience from clinical trials, pathophysiology, and management strategies. KW - CAR T cell KW - clinical trial KW - multiple myeloma KW - toxicity KW - pathophysiology KW - management Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219911 SN - 1664-3224 VL - 11 ER - TY - JOUR A1 - Solimando, Antonio Giovanni A1 - Krebs, Markus A1 - Bittrich, Max A1 - Einsele, Hermann T1 - The urgent need for precision medicine in cancer and its microenvironment: the paradigmatic case of multiple myeloma JF - Journal of Clinical Medicine N2 - No abstract available KW - precision medicine KW - multiple myeloma Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288164 SN - 2077-0383 VL - 11 IS - 18 ER - TY - JOUR A1 - Morton, Charles O. A1 - Varga, John J. A1 - Hornbach, Anke A1 - Mezger, Markus A1 - Sennefelder, Helga A1 - Kneitz, Susanne A1 - Kurzai, Oliver A1 - Krappmann, Sven A1 - Einsele, Hermann A1 - Nierman, William C. A1 - Rogers, Thomas R. A1 - Loeffler, Juergen T1 - The Temporal Dynamics of Differential Gene Expression in Aspergillus fumigatus Interacting with Human Immature Dendritic Cells In Vitro N2 - No abstract avDendritic cells (DC) are the most important antigen presenting cells and play a pivotal role in host immunity to infectious agents by acting as a bridge between the innate and adaptive immune systems. Monocyte-derived immature DCs (iDC) were infected with viable resting conidia of Aspergillus fumigatus (Af293) for 12 hours at an MOI of 5; cells were sampled every three hours. RNA was extracted from both organisms at each time point and hybridised to microarrays. iDC cell death increased at 6 h in the presence of A. fumigatus which coincided with fungal germ tube emergence; .80% of conidia were associated with iDC. Over the time course A. fumigatus differentially regulated 210 genes, FunCat analysis indicated significant up-regulation of genes involved in fermentation, drug transport, pathogenesis and response to oxidative stress. Genes related to cytotoxicity were differentially regulated but the gliotoxin biosynthesis genes were down regulated over the time course, while Aspf1 was up-regulated at 9 h and 12 h. There was an up-regulation of genes in the subtelomeric regions of the genome as the interaction progressed. The genes up-regulated by iDC in the presence of A. fumigatus indicated that they were producing a pro-inflammatory response which was consistent with previous transcriptome studies of iDC interacting with A. fumigatus germ tubes. This study shows that A. fumigatus adapts to phagocytosis by iDCs by utilising genes that allow it to survive the interaction rather than just up-regulation of specific virulence genes. KW - Dendritische Zelle Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68958 ER - TY - JOUR A1 - San-Miguel, Jesus F. A1 - Einsele, Hermann A1 - Moreau, Philippe T1 - The Role of Panobinostat Plus Bortezomib and Dexamethasone in Treating Relapsed or Relapsed and Refractory Multiple Myeloma: A European Perspective JF - Advances in Therapy N2 - Panobinostat is an oral pan-histone deacetylase inhibitor developed by Novartis. Panobinostat acts via epigenetic modification and inhibition of the aggresome pathway. In August 2015, the European Commission authorized panobinostat for use in combination with bortezomib and dexamethasone for the treatment of relapsed or relapsed and refractory multiple myeloma (MM) in patients who have received aeyen2 prior regimens including bortezomib and an immunomodulatory drug. In January 2016, the National Institute for Health and Care Excellence recommended panobinostat for use in the same combination and patient population. The authorization and recommendation were based on results from the pivotal phase 3 PANORAMA 1 (NCT01023308) clinical trial, which demonstrated an improvement in median progression-free survival of 7.8 months for the three-drug combination compared with placebo plus bortezomib and dexamethasone in this patient population. This review will discuss the current treatment landscape for relapsed/refractory MM, the mechanism of action of panobinostat, clinical data supporting the European authorization, concerns about safety and strategies for mitigating toxicity, and how panobinostat fits into the current MM landscape in Europe. KW - multiple myeloma KW - oncology KW - panobinostat KW - relapsed and refractory KW - daratumumab monotherapy KW - relapsed Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186840 VL - 33 IS - 11 ER - TY - JOUR A1 - Chatterjee, Manik A1 - Andrulis, Mindaugas A1 - Stühmer, Thorsten A1 - Müller, Elisabeth A1 - Hofmann, Claudia A1 - Steinbrunn, Torsten A1 - Heimberger, Tanja A1 - Schraud, Heike A1 - Kressmann, Stefanie A1 - Einsele, Hermann A1 - Bargou, Ralf C. T1 - The PI3K/Akt signaling pathway regulates the expression of Hsp70, which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma JF - Haematologica N2 - Despite therapeutic advances multiple myeloma remains largely incurable, and novel therapeutic concepts are needed. The Hsp90-chaperone is a reasonable therapeutic target, because it maintains oncogenic signaling of multiple deregulated pathways. However, in contrast to promising pre-clinical results, only limited clinical efficacy has been achieved through pharmacological Hsp90 inhibition. Because Hsp70 has been described to interact functionally with the Hsp90-complex, we analyzed the suitability of Hsp72 and Hsp73 as potential additional target sites. Expression of Hsp72 and Hsp73 in myeloma cells was analyzed by immunohistochemical staining and western blotting. Short interfering RNA-mediated knockdown or pharmacological inhibition of Hsp72 and Hsp73 was performed to evaluate the role of these proteins in myeloma cell survival and for Hsp90-chaperone function. Furthermore, the role of PI3K-dependent signaling in constitutive and inducible Hsp70 expression was investigated using short interfering RNA-mediated and pharmacological PI3K inhibition. Hsp72 and Hsp73 were frequently overexpressed in multiple myeloma. Knockdown of Hsp72 and/or Hsp73 or treatment with VER-155008 induced apoptosis of myeloma cells. Hsp72/Hsp73 inhibition decreased protein levels of Hsp90-chaperone clients affecting multiple oncogenic signaling pathways, and acted synergistically with the Hsp90 inhibitor NVP-AUY922 in the induction of death of myeloma cells. Inhibition of the PI3K/Akt/GSK3b pathway with short interfering RNA or PI103 decreased expression of the heat shock transcription factor 1 and down-regulated constitutive and inducible Hsp70 expression. Treatment of myeloma cells with a combination of NVP-AUY922 and PI103 resulted in additive to synergistic cytotoxicity. In conclusion, Hsp72 and Hsp73 sustain Hsp90-haperone function and critically contribute to the survival of myeloma cells. Translation of Hsp70 inhibition into the clinic is therefore highly desirable. Treatment with PI3K inhibitors might represent an alternative therapeutic strategy to target Hsp70. KW - Haematology Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130574 VL - 98 IS - 7 ER - TY - JOUR A1 - Rasche, Leo A1 - Duell, Johannes A1 - Morgner, Charlotte A1 - Chatterjee, Manik A1 - Hensel, Frank A1 - Rosenwald, Andreas A1 - Einsele, Hermann A1 - Topp, Max S. A1 - Brändlein, Stephanie T1 - The Natural Human IgM Antibody PAT-SM6 Induces Apoptosis in Primary Human Multiple Myeloma Cells by Targeting Heat Shock Protein GRP78 JF - PLoS ONE N2 - In contrast to other haematological malignancies, targeted immunotherapy has not entered standard treatment regimens for de novo or relapsed multiple myeloma (MM) yet. While a number of IgG-formatted monoclonal antibodies are currently being evaluated in clinical trials in MM, our study aimed to investigate whether the fully human IgM monoclonal antibody PAT-SM6 that targets a tumour-specific variant of the heat shock protein GRP78 might be an attractive candidate for future immunotherapeutic approaches. We here show that GRP78 is stably and consistently expressed on the surface on tumour cells from patients with de novo, but also relapsed MM and that binding of PAT-SM6 to MM cells can specifically exert cytotoxic effects on malignant plasma cells, whereas non-malignant cells are not targeted. We demonstrate that the induction of apoptosis and, to a lesser extent, complement dependent cytotoxicity is the main mode of action of PAT-SM6, whereas antibody dependent cellular cytotoxicity does not appear to contribute to the cytotoxic properties of this antibody. Given the favourable safety profile of PAT-SM6 in monkeys, but also in a recent phase I trial in patients with malignant melanoma, our results form the basis for a planned phase I study in patients with relapsed MM. KW - cytotoxicity KW - apoptosis KW - immunohistochemistry techniques KW - enzyme-linked immunoassays KW - multiple myeloma KW - cell staining KW - cell binding KW - complement system Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130125 VL - 8 IS - 5 ER - TY - JOUR A1 - Zhou, Xiang A1 - Dierks, Alexander A1 - Kertels, Olivia A1 - Samnick, Samuel A1 - Kircher, Malte A1 - Buck, Andreas K. A1 - Haertle, Larissa A1 - Knorz, Sebastian A1 - Böckle, David A1 - Scheller, Lukas A1 - Messerschmidt, Janin A1 - Barakat, Mohammad A1 - Truger, Marietta A1 - Haferlach, Claudia A1 - Einsele, Hermann A1 - Rasche, Leo A1 - Kortüm, K. Martin A1 - Lapa, Constantin T1 - The link between cytogenetics/genomics and imaging patterns of relapse and progression in patients with relapsed/refractory multiple myeloma: a pilot study utilizing 18F-FDG PET/CT JF - Cancers N2 - Utilizing 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT), we performed this pilot study to evaluate the link between cytogenetic/genomic markers and imaging patterns in relapsed/refractory (RR) multiple myeloma (MM). We retrospectively analyzed data of 24 patients with RRMM who were treated at our institution between November 2018 and February 2020. At the last relapse/progression, patients had been treated with a median of three (range 1–10) lines of therapy. Six (25%) patients showed FDG avid extramedullary disease without adjacency to bone. We observed significantly higher maximum standardized uptake values (SUV\(_{max}\)) in patients harboring del(17p) compared with those without del(17p) (p = 0.025). Moreover, a high SUV\(_{max}\) of >15 indicated significantly shortened progression-free survival (PFS) (p = 0.01) and overall survival (OS) (p = 0.0002). One female patient exhibited biallelic TP53 alteration, i.e., deletion and mutation, in whom an extremely high SUV\(_{max}\) of 37.88 was observed. In summary, this pilot study suggested a link between del(17p)/TP53 alteration and high SUV\(_{max}\) on 18F-FDG PET/CT in RRMM patients. Further investigations are highly warranted at this point. KW - radiogenomics KW - 18F-FDG PET/CT KW - multiple myeloma KW - relapse KW - progression KW - pattern Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211157 SN - 2072-6694 VL - 12 IS - 9 ER -