TY - JOUR A1 - Wiegering, Armin A1 - Korb, Doreen A1 - Thalheimer, Andreas A1 - Kämmerer, Ulrike A1 - Allmanritter, Jan A1 - Matthes, Niels A1 - Linnebacher, Michael A1 - Schlegel, Nicolas A1 - Klein, Ingo A1 - Ergün, Süleyman A1 - Germer, Christoph-Thomas A1 - Otto, Christoph T1 - E7080 (Lenvatinib), a Multi-Targeted Tyrosine Kinase Inhibitor, Demonstrates Antitumor Activities Against Colorectal Cancer Xenografts N2 - Clinical prognosis of metastasized colorectal carcinoma (CRC) is still not at desired levels and novel drugs are needed. Here, we focused on the multi-tyrosine kinase inhibitor E7080 (Lenvatinib) and assessed its therapeutic efficacy against human CRC cell lines in vitro and human CRC xenografts in vivo. The effect of E7080 on cell viability was examined on 10 humanCRCcell lines and humanendothelial cells (HUVEC). The inhibitory effect of E7080 on VEGF-induced angiogenesis was studied in an ex vivo mouse aortic ring angiogenesis assay. In addition, the efficacy of E7080 against xenografts derived fromCRC cell lines and CRC patient resection specimenswithmutated KRASwas investigated in vivo. Arelatively low cytotoxic effect of E7080 on CRC cell viabilitywas observed in vitro. Endothelial cells (HUVEC)weremore susceptible to the incubation with E7080. This is in line with the observation that E7080 demonstrated an anti-angiogenic effect in a three-dimensional ex vivo mouse aortic ring angiogenesis assay. E7080 effectively disrupted CRC cell-mediated VEGF-stimulated growth of HUVEC in vitro. Daily in vivo treatment with E7080 (5 mg/kg) significantly delayed the growth of KRAS mutated CRC xenografts with decreased density of tumor-associated vessel formations and without tumor regression. This observation is in line with results that E7080 did not significantly reduce the number of Ki67-positive cells in CRC xenografts. The results suggest antiangiogenic activity of E7080 at a dosage thatwas well tolerated by nudemice. E7080 may provide therapeutic benefits in the treatment of CRC with mutated KRAS. KW - Chirurgie Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111165 ER - TY - JOUR A1 - Jurowich, Christian Ferdinand A1 - Otto, Christoph A1 - Rikkala, Prashanth Reddy A1 - Wagner, Nicole A1 - Vrhovac, Ivana A1 - Sabolić, Ivan A1 - Germer, Christoph-Thomas A1 - Koepsell, Hermann T1 - Ileal interposition in rats with experimental type 2 like diabetes improves glycemic control independently of glucose absorption JF - Journal of Diabetes Research N2 - Bariatric operations in obese patients with type 2 diabetes often improve diabetes before weight loss is observed. In patients mainly Roux-en-Y-gastric bypass with partial stomach resection is performed. Duodenojejunal bypass (DJB) and ileal interposition (IIP) are employed in animal experiments. Due to increased glucose exposition of L-cells located in distal ileum, all bariatric surgery procedures lead to higher secretion of antidiabetic glucagon like peptide-1 (GLP-1) after glucose gavage. After DJB also downregulation of Na\(^{+}\)-D-glucose cotransporter SGLT1 was observed. This suggested a direct contribution of decreased glucose absorption to the antidiabetic effect of bariatric surgery. To investigate whether glucose absorption is also decreased after IIP, we induced diabetes with decreased glucose tolerance and insulin sensitivity in male rats and investigated effects of IIP on diabetes and SGLT1. After IIP, we observed weight-independent improvement of glucose tolerance, increased insulin sensitivity, and increased plasma GLP-1 after glucose gavage. The interposed ileum was increased in diameter and showed increased length of villi, hyperplasia of the epithelial layer, and increased number of L-cells. The amount of SGLT1-mediated glucose uptake in interposed ileum was increased 2-fold reaching the same level as in jejunum. Thus, improvement of glycemic control by bariatric surgery does not require decreased glucose absorption. KW - glucagon like peptide-1 KW - food intake KW - body weight KW - cotransporter SGLT1 KW - bariatric surgery KW - biliopancreatic diversion KW - intestinal glucose KW - gut hormones KW - duodenal jejunal bypass KW - Y-gastric bypass Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149166 VL - 2015 IS - 490365 ER - TY - JOUR A1 - Otto, Christoph A1 - Friedrich, Alexandra A1 - Madunić, Ivana Vrhovac A1 - Baumeier, Christian A1 - Schwenk, Robert W. A1 - Karaica, Dean A1 - Germer, Christoph-Thomas A1 - Schürmann, Annette A1 - Sabolić, Ivan A1 - Koepsell, Hermann, Hermann T1 - Antidiabetic Effects of a Tripeptide That Decreases Abundance of Na\(^+\)-D-glucose Cotransporter SGLT1 in the Brush-Border Membrane of the Small Intestine JF - ACS Omega N2 - In enterocytes, protein RS1 (RSC1A1) mediates an increase of glucose absorption after ingestion of glucose-rich food via upregulation of Na+-D-glucose cotransporter SGLT1 in the brush-border membrane (BBM). Whereas RS1 decelerates the exocytotic pathway of vesicles containing SGLT1 at low glucose levels between meals, RS1-mediated deceleration is relieved after ingestion of glucose-rich food. Regulation of SGLT1 is mediated by RS1 domain RS1-Reg, in which Gln-Ser-Pro (QSP) is effective. In contrast to QSP and RS1-Reg, Gln-Glu-Pro (QEP) and RS1-Reg with a serine to glutamate exchange in the QSP motif downregulate the abundance of SGLT1 in the BBM at high intracellular glucose concentrations by about 50%. We investigated whether oral application of QEP improves diabetes in db/db mice and affects the induction of diabetes in New Zealand obese (NZO) mice under glucolipotoxic conditions. After 6-day administration of drinking water containing 5 mM QEP to db/db mice, fasting glucose was decreased, increase of blood glucose in the oral glucose tolerance test was blunted, and insulin sensitivity was increased. When QEP was added for several days to a high fat/high carbohydrate diet that induced diabetes in NZO mice, the increase of random plasma glucose was prevented, accompanied by lower plasma insulin levels. QEP is considered a lead compound for development of new antidiabetic drugs with more rapid cellular uptake. In contrast to SGLT1 inhibitors, QEP-based drugs may be applied in combination with insulin for the treatment of type 1 and type 2 diabetes, decreasing the required insulin amount, and thereby may reduce the risk of hypoglycemia. KW - chemistry Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230654 N1 - Lizenz: https://pubs.acs.org/page/policy/authorchoice_termsofuse.html VL - 5 IS - 45 ER -