TY - JOUR A1 - Schanbacher, Constanze A1 - Hermanns, Heike M. A1 - Lorenz, Kristina A1 - Wajant, Harald A1 - Lang, Isabell T1 - Complement 1q/tumor necrosis factor-related proteins (CTRPs): structure, receptors and signaling JF - Biomedicines N2 - Adiponectin and the other 15 members of the complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) family are secreted proteins composed of an N-terminal variable domain followed by a stalk region and a characteristic C-terminal trimerizing globular C1q (gC1q) domain originally identified in the subunits of the complement protein C1q. We performed a basic PubMed literature search for articles mentioning the various CTRPs or their receptors in the abstract or title. In this narrative review, we briefly summarize the biology of CTRPs and focus then on the structure, receptors and major signaling pathways of CTRPs. Analyses of CTRP knockout mice and CTRP transgenic mice gave overwhelming evidence for the relevance of the anti-inflammatory and insulin-sensitizing effects of CTRPs in autoimmune diseases, obesity, atherosclerosis and cardiac dysfunction. CTRPs form homo- and heterotypic trimers and oligomers which can have different activities. The receptors of some CTRPs are unknown and some receptors are redundantly targeted by several CTRPs. The way in which CTRPs activate their receptors to trigger downstream signaling pathways is largely unknown. CTRPs and their receptors are considered as promising therapeutic targets but their translational usage is still hampered by the limited knowledge of CTRP redundancy and CTRP signal transduction. KW - adiponectin KW - AMPK KW - C1q/TNF related protein (CTRP) KW - inflammation KW - metabolism Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304136 SN - 2227-9059 VL - 11 IS - 2 ER - TY - JOUR A1 - Rebs, Sabine A1 - Streckfuss-Bömeke, Katrin T1 - How can we use stem cell-derived cardiomyocytes to understand the involvement of energetic metabolism in alterations of cardiac function? JF - Frontiers in Molecular Medicine N2 - Mutations in the mitochondrial-DNA or mitochondria related nuclear-encoded-DNA lead to various multisystemic disorders collectively termed mitochondrial diseases. One in three cases of mitochondrial disease affects the heart muscle, which is called mitochondrial cardiomyopathy (MCM) and is associated with hypertrophic, dilated, and noncompact cardiomyopathy. The heart is an organ with high energy demand, and mitochondria occupy 30%–40% of its cardiomyocyte-cell volume. Mitochondrial dysfunction leads to energy depletion and has detrimental effects on cardiac performance. However, disease development and progression in the context of mitochondrial and nuclear DNA mutations, remains incompletely understood. The system of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) is an excellent platform to study MCM since the unique genetic identity to their donors enables a robust recapitulation of the predicted phenotypes in a dish on a patient-specific level. Here, we focus on recent insights into MCM studied by patient-specific iPSC-CM and further discuss research gaps and advances in metabolic maturation of iPSC-CM, which is crucial for the study of mitochondrial dysfunction and to develop novel therapeutic strategies. KW - mitochondrial cardiomyopathy KW - iPSC-cardiomyocytes KW - maturation strategies KW - Barth syndrome KW - Friedreich’s ataxia KW - lysosomal storage disorders Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-327344 VL - 3 ER - TY - JOUR A1 - Hartmann, Nico A1 - Knierim, Maria A1 - Maurer, Wiebke A1 - Dybkova, Nataliya A1 - Hasenfuß, Gerd A1 - Sossalla, Samuel A1 - Streckfuss-Bömeke, Katrin T1 - Molecular and functional relevance of Na\(_V\)1.8-induced atrial arrhythmogenic triggers in a human SCN10A knock-out stem cell model JF - International Journal of Molecular Sciences N2 - In heart failure and atrial fibrillation, a persistent Na\(^+\) current (I\(_{NaL}\)) exerts detrimental effects on cellular electrophysiology and can induce arrhythmias. We have recently shown that Na\(_V\)1.8 contributes to arrhythmogenesis by inducing a I\(_{NaL}\). Genome-wide association studies indicate that mutations in the SCN10A gene (Na\(_V\)1.8) are associated with increased risk for arrhythmias, Brugada syndrome, and sudden cardiac death. However, the mediation of these Na\(_V\)1.8-related effects, whether through cardiac ganglia or cardiomyocytes, is still a subject of controversial discussion. We used CRISPR/Cas9 technology to generate homozygous atrial SCN10A-KO-iPSC-CMs. Ruptured-patch whole-cell patch-clamp was used to measure the I\(_{NaL}\) and action potential duration. Ca\(^{2+}\) measurements (Fluo 4-AM) were performed to analyze proarrhythmogenic diastolic SR Ca\(^{2+}\) leak. The I\(_{NaL}\) was significantly reduced in atrial SCN10A KO CMs as well as after specific pharmacological inhibition of Na\(_V\)1.8. No effects on atrial APD\(_{90}\) were detected in any groups. Both SCN10A KO and specific blockers of Na\(_V\)1.8 led to decreased Ca\(^{2+}\) spark frequency and a significant reduction of arrhythmogenic Ca\(^{2+}\) waves. Our experiments demonstrate that Na\(_V\)1.8 contributes to I\(_{NaL}\) formation in human atrial CMs and that Na\(_V\)1.8 inhibition modulates proarrhythmogenic triggers in human atrial CMs and therefore Na\(_V\)1.8 could be a new target for antiarrhythmic strategies. KW - Na\(_V\)1.8 KW - iPSC-cardiomyocytes KW - late Na\(^+\) current (I\(_{NaL}\)) KW - CRISPR Cas9 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-362708 SN - 1422-0067 VL - 24 IS - 12 ER - TY - JOUR A1 - Eberl, Hanna A1 - Rebs, Sabine A1 - Hoppe, Stefanie A1 - Sedaghat-Hamedani, Farbod A1 - Kayvanpour, Elham A1 - Meder, Benjamin A1 - Streckfuss-Bömeke, Katrin T1 - Generation of an RBM20-mutation-associated left-ventricular non-compaction cardiomyopathy iPSC line (UMGi255-A) into a DCM genetic background to investigate monogenetic cardiomyopathies JF - Stem Cell Research N2 - RBM20 mutations account for 3 % of genetic cardiomypathies and manifest with high penetrance and arrhythmogenic effects. Numerous mutations in the conserved RS domain have been described as causing dilated cardiomyopathy (DCM), whereas a particular mutation (p.R634L) drives development of a different cardiac phenotype: left-ventricular non-compaction cardiomyopathy. We generated a mutation-induced pluripotent stem cell (iPSC) line in which the RBM20-LVNC mutation p.R634L was introduced into a DCM patient line with rescued RBM20-p.R634W mutation. These DCM-634L-iPSC can be differentiated into functional cardiomyocytes to test whether this RBM20 mutation induces development of the LVNC phenotype within the genetic context of a DCM patient. KW - cell biology KW - developmental biology KW - general medicine KW - RBM20 mutations KW - DCM genetic background KW - monogenetic cardiomyopathies Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350565 SN - 1873-5061 VL - 74 ER - TY - JOUR A1 - Janz, Anna A1 - Walz, Katharina A1 - Cirnu, Alexandra A1 - Surjanto, Jessica A1 - Urlaub, Daniela A1 - Leskien, Miriam A1 - Kohlhaas, Michael A1 - Nickel, Alexander A1 - Brand, Theresa A1 - Nose, Naoko A1 - Wörsdörfer, Philipp A1 - Wagner, Nicole A1 - Higuchi, Takahiro A1 - Maack, Christoph A1 - Dudek, Jan A1 - Lorenz, Kristina A1 - Klopocki, Eva A1 - Ergün, Süleyman A1 - Duff, Henry J. A1 - Gerull, Brenda T1 - Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes JF - Molecular Metabolism N2 - Highlights • Loss of DNAJC19's DnaJ domain disrupts cardiac mitochondrial structure, leading to abnormal cristae formation in iPSC-CMs. • Impaired mitochondrial structures lead to an increased mitochondrial respiration, ROS and an elevated membrane potential. • Mutant iPSC-CMs show sarcomere dysfunction and a trend to more arrhythmias, resembling DCMA-associated cardiomyopathy. Background Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. Methods We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca\(^{2+}\) kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tv\(_{HeLa}\)). Results Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca\(^{2+}\) concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. Conclusions Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca\(^{2+}\) kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy. KW - cell biology KW - molecular biology KW - dilated cardiomyopathy with ataxia KW - genetics KW - metabolism KW - mitochondria KW - OXPHOS KW - ROS KW - contractility Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350393 SN - 2212-8778 VL - 79 ER - TY - INPR A1 - Brenner, Marian A1 - Zink, Christoph A1 - Witzinger, Linda A1 - Keller, Angelika A1 - Hadamek, Kerstin A1 - Bothe, Sebastian A1 - Neuenschwander, Martin A1 - Villmann, Carmen A1 - von Kries, Jens Peter A1 - Schindelin, Hermann A1 - Jeanclos, Elisabeth A1 - Gohla, Antje T1 - 7,8-Dihydroxyflavone is a direct inhibitor of pyridoxal phosphatase T2 - eLife N2 - Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5’-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small molecule screening, protein crystallography and biolayer interferometry, we discover and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain. KW - 7,8-dihydroxyflavone (7,8-DHF) KW - pyridoxal phosphatase (PDXP) KW - vitamin B6 KW - PDXP inhibitors Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350446 ER -