TY - JOUR A1 - Boetzl, Fabian A. A1 - Konle, Antonia A1 - Krauss, Jochen T1 - Aphid cards – useful model for assessing predation rates or bias prone nonsense? JF - Journal of Applied Entomology N2 - Predation on pest organisms is an essential ecosystem function supporting yields in modern agriculture. However, assessing predation rates is intricate, and they can rarely be linked directly to predator densities or functions. We tested whether sentinel prey aphid cards are useful tools to assess predation rates in the field. Therefore, we looked at aphid cards of different sizes on the ground level as well as within the vegetation. Additionally, by trapping ground‐dwelling predators, we examined whether obtained predation rates could be linked to predator densities and traits. Predation rates recorded with aphid cards were independent of aphid card size. However, predation rates on the ground level were three times higher than within the vegetation. We found both predatory carabid activity densities as well as community weighted mean body size to be good predictors for predation rates. Predation rates obtained from aphid cards are stable over card type and related to predator assemblages. Aphid cards, therefore, are a useful, efficient method for rapidly assessing the ecosystem function predation. Their use might especially be recommended for assessments on the ground level and when time and resource limitations rule out more elaborate sentinel prey methods using exclosures with living prey animals. KW - carabid beetles KW - ecosystem service KW - ground-dwelling predators KW - methods KW - natural pest control KW - sentinel prey Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204798 VL - 144 IS - 1-2 ER - TY - JOUR A1 - König, Julia A1 - Guerreiro, Marco Alexandre A1 - Peršoh, Derek A1 - Begerow, Dominik A1 - Krauss, Jochen T1 - Knowing your neighbourhood - the effects of Epichloë endophytes on foliar fungal assemblages in perennial ryegrass in dependence of season and land-use intensity JF - PeerJ N2 - Epichloë endophytes associated with cool-season grass species can protect their hosts from herbivory and can suppress mycorrhizal colonization of the hosts’ roots. However, little is known about whether or not Epichloë endophyte infection can also change the foliar fungal assemblages of the host. We tested 52 grassland study sites along a land-use intensity gradient in three study regions over two seasons (spring vs. summer) to determine whether Epichloë infection of the host grass Lolium perenne changes the fungal community structure in leaves. Foliar fungal communities were assessed by Next Generation Sequencing of the ITS rRNA gene region. Fungal community structure was strongly affected by study region and season in our study, while land-use intensity and infection with Epichloë endophytes had no significant effects. We conclude that effects on non-systemic endophytes resulting from land use practices and Epichloë infection reported in other studies were masked by local and seasonal variability in this study’s grassland sites. KW - endophytic fungi KW - symbiosis KW - Lolium perenne KW - land use KW - fungus-plant interaction KW - foliar fungal community KW - Epichloë Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176814 VL - 6 IS - e4660 ER - TY - JOUR A1 - Boetzl, Fabian A. A1 - Ries, Elena A1 - Schneider, Gudrun A1 - Krauss, Jochen T1 - It’s a matter of design - how pitfall trap design affects trap samples and possible predictions JF - PeerJ N2 - Background: Pitfall traps are commonly used to assess ground dwelling arthropod communities. The effects of different pitfall trap designs on the trapping outcome are poorly investigated however they might affect conclusions drawn from pitfall trap data greatly. Methods: We tested four pitfall trap types which have been used in previous studies for their effectiveness: a simple type, a faster exchangeable type with an extended plastic rim plate and two types with guidance barriers (V- and X-shaped). About 20 traps were active for 10 weeks and emptied biweekly resulting in 100 trap samples. Results: Pitfall traps with guidance barriers were up to five times more effective than simple pitfall traps and trap samples resulted in more similar assemblage approximations. Pitfall traps with extended plastic rim plates did not only perform poorly but also resulted in distinct carabid assemblages with less individuals of small species and a larger variation. Discussion: Due to the obvious trait filtering and resulting altered assemblages, we suggest not to use pitfall traps with extended plastic rim plates. In comprehensive biodiversity inventories, a smaller number of pitfall traps with guidance barriers and a larger number of spatial replicates is of advantage, while due to comparability reasons, the use of simple pitfall traps will be recommended in most other cases. KW - biodiversity estimation KW - spiders KW - carabid beetles KW - ground dwelling predators KW - staphylinid beetles KW - sampling method KW - inventory KW - species richness Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176870 VL - 6 IS - e5078 ER - TY - JOUR A1 - Schenk, Mariela A1 - Krauss, Jochen A1 - Holzschuh, Andrea T1 - Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees JF - Journal of Animal Ecology N2 - 1. Global warming can disrupt mutualistic interactions between solitary bees and plants when increasing temperature differentially changes the timing of interacting partners. One possible scenario is for insect phenology to advance more rapidly than plant phenology. 2. However, empirical evidence for fitness consequences due to temporal mismatches is lacking for pollinators and it remains unknown if bees have developed strategies to mitigate fitness losses following temporal mismatches. 3. We tested the effect of temporal mismatches on the fitness of three spring-emerging solitary bee species, including one pollen specialist. Using flight cages, we simulated (i) a perfect synchronization (from a bee perspective): bees and flowers occur simultaneously, (ii) a mismatch of 3days and (iii) a mismatch of 6days, with bees occurring earlier than flowers in the latter two cases. 4. A mismatch of 6days caused severe fitness losses in all three bee species, as few bees survived without flowers. Females showed strongly reduced activity and reproductive output compared to synchronized bees. Fitness consequences of a 3-day mismatch were species-specific. Both the early-spring species Osmia cornuta and the mid-spring species Osmia bicornis produced the same number of brood cells after a mismatch of 3days as under perfect synchronization. However, O.cornuta decreased the number of female offspring, whereas O.bicornis spread the brood cells over fewer nests, which may increase offspring mortality, e.g. due to parasitoids. The late-spring specialist Osmia brevicornis produced fewer brood cells even after a mismatch of 3days. Additionally, our results suggest that fitness losses after temporal mismatches are higher during warm than cold springs, as the naturally occurring temperature variability revealed that warm temperatures during starvation decreased the survival rate of O.bicornis. 5. We conclude that short temporal mismatches can cause clear fitness losses in solitary bees. Although our results suggest that bees have evolved species-specific strategies to mitigate fitness losses after temporal mismatches, the bees were not able to completely compensate for impacts on their fitness after temporal mismatches with their food resources. KW - conditional sex allocation KW - emergence KW - mitigation strategies KW - mutualism KW - phenological shift KW - pollination KW - species interactions KW - pollinator interactions KW - climate-change KW - phenological response Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228533 VL - 87 IS - 1 ER - TY - JOUR A1 - Beer, Katharina A1 - Joschinski, Jens A1 - Sastre, Alazne Arrazola A1 - Krauss, Jochen A1 - Helfrich-Förster, Charlotte T1 - A damping circadian clock drives weak oscillations in metabolism and locomotor activity of aphids (Acyrthosiphon pisum) JF - Scientific Reports N2 - Timing seasonal events, like reproduction or diapause, is crucial for the survival of many species. Global change causes phenologies worldwide to shift, which requires a mechanistic explanation of seasonal time measurement. Day length (photoperiod) is a reliable indicator of winter arrival, but it remains unclear how exactly species measure day length. A reference for time of day could be provided by a circadian clock, by an hourglass clock, or, as some newer models suggest, by a damped circadian clock. However, damping of clock outputs has so far been rarely observed. To study putative clock outputs of Acyrthosiphon pisum aphids, we raised individual nymphs on coloured artificial diet, and measured rhythms in metabolic activity in light-dark illumination cycles of 16:08 hours (LD) and constant conditions (DD). In addition, we kept individuals in a novel monitoring setup and measured locomotor activity. We found that A. pisum is day-active in LD, potentially with a bimodal distribution. In constant darkness rhythmicity of locomotor behaviour persisted in some individuals, but patterns were mostly complex with several predominant periods. Metabolic activity, on the other hand, damped quickly. A damped circadian clock, potentially driven by multiple oscillator populations, is the most likely explanation of our results. KW - circadian mechanisms KW - behavioural ecology KW - damped circadian clock KW - Acyrthosiphon pisum Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170020 VL - 7 IS - 14906 ER - TY - JOUR A1 - Dainese, Matteo A1 - Schneider, Gudrun A1 - Krauss, Jochen A1 - Steffan-Dewenter, Ingolf T1 - Complementarity among natural enemies enhances pest suppression JF - Scientific Reports N2 - Natural enemies have been shown to be effective agents for controlling insect pests in crops. However, it remains unclear how different natural enemy guilds contribute to the regulation of pests and how this might be modulated by landscape context. In a field exclusion experiment in oilseed rape (OSR), we found that parasitoids and ground-dwelling predators acted in a complementary way to suppress pollen beetles, suggesting that pest control by multiple enemies attacking a pest during different periods of its occurrence in the field improves biological control efficacy. The density of pollen beetle significantly decreased with an increased proportion of non-crop habitats in the landscape. Parasitism had a strong effect on pollen beetle numbers in landscapes with a low or intermediate proportion of non-crop habitats, but not in complex landscapes. Our results underline the importance of different natural enemy guilds to pest regulation in crops, and demonstrate how biological control can be strengthened by complementarity among natural enemies. The optimization of natural pest control by adoption of specific management practices at local and landscape scales, such as establishing non-crop areas, low-impact tillage, and temporal crop rotation, could significantly reduce dependence on pesticides and foster yield stability through ecological intensification in agriculture. KW - ecosystem services KW - agroecology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158621 VL - 7 ER - TY - JOUR A1 - Joschinski, Jens A1 - Beer, Katharina A1 - Helfrich-Förster, Charlotte A1 - Krauss, Jochen T1 - Pea Aphids (Hemiptera: Aphididae) Have Diurnal Rhythms When Raised Independently of a Host Plant JF - Journal of Insect Science N2 - Seasonal timing is assumed to involve the circadian clock, an endogenous mechanism to track time and measure day length. Some debate persists, however, and aphids were among the first organisms for which circadian clock involvement was questioned. Inferences about links to phenology are problematic, as the clock itself is little investigated in aphids. For instance, it is unknown whether aphids possess diurnal rhythms at all. Possibly, the close interaction with host plants prevents independent measurements of rhythmicity. We reared the pea aphid Acyrthosiphon pisum (Harris) on an artificial diet, and recorded survival, moulting, and honeydew excretion. Despite their plant-dependent life style, aphids were independently rhythmic under light–dark conditions. This first demonstration of diurnal aphid rhythms shows that aphids do not simply track the host plant’s rhythmicity. KW - artificial diet KW - circadian clock KW - hourglass clock KW - Acyrthosiphon pisum KW - photoperiodism Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168783 VL - 16 IS - 1 ER - TY - JOUR A1 - Gámez-Virués, Sagrario A1 - Perović, David J. A1 - Gossner, Martin M. A1 - Börschig, Carmen A1 - Blüthgen, Nico A1 - de Jong, Heike A1 - Simons, Nadja K. A1 - Klein, Alexandra-Maria A1 - Krauss, Jochen A1 - Maier, Gwen A1 - Scherber, Christoph A1 - Steckel, Juliane A1 - Rothenwöhrer, Christoph A1 - Steffan-Dewenter, Ingolf A1 - Weiner, Christiane N. A1 - Weisser, Wolfgang A1 - Werner, Michael A1 - Tscharntke, Teja A1 - Westphal, Catrin T1 - Landscape simplification filters species traits and drives biotic homogenization JF - Nature Communications N2 - Biodiversity loss can affect the viability of ecosystems by decreasing the ability of communities to respond to environmental change and disturbances. Agricultural intensification is a major driver of biodiversity loss and has multiple components operating at different spatial scales: from in-field management intensity to landscape-scale simplification. Here we show that landscape-level effects dominate functional community composition and can even buffer the effects of in-field management intensification on functional homogenization, and that animal communities in real-world managed landscapes show a unified response (across orders and guilds) to both landscape-scale simplification and in-field intensification. Adults and larvae with specialized feeding habits, species with shorter activity periods and relatively small body sizes are selected against in simplified landscapes with intense in-field management. Our results demonstrate that the diversity of land cover types at the landscape scale is critical for maintaining communities, which are functionally diverse, even in landscapes where in-field management intensity is high. KW - land-use intensity KW - community functional-responses KW - body-size KW - agricultural intensification KW - sustainable intensification KW - managed grasslands KW - biodiversity KW - diversity KW - heterogenity KW - butterflies Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141925 VL - 6 IS - 8568 ER - TY - JOUR A1 - Joschinski, Jens A1 - Hovestadt, Thomas A1 - Krauss, Jochen T1 - Coping with shorter days: do phenology shifts constrain aphid fitness? JF - PeerJ N2 - Climate change can alter the phenology of organisms. It may thus lead seasonal organisms to face different day lengths than in the past, and the fitness consequences of these changes are as yet unclear. To study such effects, we used the pea aphid Acyrthosiphon pisum as a model organism, as it has obligately asexual clones which can be used to study day length effects without eliciting a seasonal response. We recorded life-history traits under short and long days, both with two realistic temperature cycles with means differing by 2 °C. In addition, we measured the population growth of aphids on their host plant Pisum sativum. We show that short days reduce fecundity and the length of the reproductive period of aphids. Nevertheless, this does not translate into differences at the population level because the observed fitness costs only become apparent late in the individual's life. As expected, warm temperature shortens the development time by 0.7 days/°C, leading to faster generation times. We found no interaction of temperature and day length. We conclude that day length changes cause only relatively mild costs, which may not decelerate the increase in pest status due to climate change. KW - Homoptera aphididae KW - clock reproduction ecology KW - phenotypic plasticity KW - phenology shifts KW - insect timing KW - physiological constraints KW - day length KW - circadian rhythms KW - Acyrthosiphon pisum KW - climate change Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148382 VL - 3 IS - e1103 ER - TY - JOUR A1 - McCarthy, Michael A. A1 - Moore, Alana L. A1 - Krauss, Jochen A1 - Morgan, John W. A1 - Clements, Christopher F. T1 - Linking Indices for Biodiversity Monitoring to Extinction Risk Theory T1 - Conectando Índices para el Monitoreo de la Biodiversidad con la Teoría de Riesgo de Extinción JF - Conservation Biology N2 - Biodiversity indices often combine data from different species when used in monitoring programs. Heuristic properties can suggest preferred indices, but we lack objective ways to discriminate between indices with similar heuristics. Biodiversity indices can be evaluated by determining how well they reflect management objectives that a monitoring program aims to support. For example, the Convention on Biological Diversity requires reporting about extinction rates, so simple indices that reflect extinction risk would be valuable. We developed 3 biodiversity indices that are based on simple models of population viability that relate extinction risk to abundance. We based the first index on the geometric mean abundance of species and the second on a more general power mean. In a third index, we integrated the geometric mean abundance and trend. These indices require the same data as previous indices, but they also relate directly to extinction risk. Field data for butterflies and woodland plants and experimental studies of protozoan communities show that the indices correlate with local extinction rates. Applying the index based on the geometric mean to global data on changes in avian abundance suggested that the average extinction probability of birds has increased approximately 1% from 1970 to 2009. N2 - Los índices de biodiversidad combinan frecuentemente los datos de diferentes especies cuando se usan en los programas de monitoreo. Las propiedades heurísticas pueden sugerir índices preferidos, pero carecemos de medios objetivos para discriminar a los índices con propiedades heurísticas similares. Los índices de biodiversidad pueden evaluarse al determinar qué tan bien reflejan los objetivos de manejo que un programa de monitoreo busca apoyar. Por ejemplo, la Convención sobre la Diversidad Biológica requiere reportar las tasas de extinción, así que los índices que reflejan el riesgo de extinción serían valiosos. Desarrollamos 3 índices de biodiversidad que se basan en modelos sencillos de viabilidad de población y que relacionan el riesgo de extinción con la abundancia. Basamos el primer índice en la media geométrica de la abundancia de especies, y el segundo en una media de poder m´as general. En el tercer índice integramos la media geométrica y la tendencia. Estos índices requieren los mismos datos que índices previos, pero también se relacionan directamente con el riesgo de extinci´on. La información de campo sobre mariposas y plantas de bosque, y los estudios experimentales de comunidades protozoarias, muestran que los índices se correlacionan con las tasas locales de extinción. Al aplicar el índice basado en la media geométrica sobre los datos globales de los cambios en la abundancia de aves, sugirió que la probabilidad de extinción promedio de aves ha incrementado aproximadamente 1% desde 1970 hasta 2009. KW - biodiversity index KW - biodiversity measure KW - extinction risk KW - geometric mean KW - riesgo de extinción KW - medida de la biodiversidad KW - media geométrica KW - índice de biodiversidad Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121218 VL - 28 IS - 6 ER -