TY - JOUR A1 - Kader, Hidaya A. A1 - Azeem, Muhammad A1 - Jwayed, Suhib A. A1 - Al-Shehhi, Aaesha A1 - Tabassum, Attia A1 - Ayoub, Mohammed Akli A1 - Hetta, Helal F. A1 - Waheed, Yasir A1 - Iratni, Rabah A1 - Al-Dhaheri, Ahmed A1 - Muhammad, Khalid T1 - Current insights into immunology and novel therapeutics of atopic dermatitis JF - Cells N2 - Atopic dermatitis (AD) is one of the most prevalent inflammatory disease among non-fatal skin diseases, affecting up to one fifth of the population in developed countries. AD is characterized by recurrent pruritic and localized eczema with seasonal fluctuations. AD initializes the phenomenon of atopic march, during which infant AD patients are predisposed to progressive secondary allergies such as allergic rhinitis, asthma, and food allergies. The pathophysiology of AD is complex; onset of the disease is caused by several factors, including strong genetic predisposition, disrupted epidermal barrier, and immune dysregulation. AD was initially characterized by defects in the innate immune system and a vigorous skewed adaptive Th2 response to environmental agents; there are compelling evidences that the disorder involves multiple immune pathways. Symptomatic palliative treatment is the only strategy to manage the disease and restore skin integrity. Researchers are trying to more precisely define the contribution of different AD genotypes and elucidate the role of various immune axes. In this review, we have summarized the current knowledge about the roles of innate and adaptive immune responsive cells in AD. In addition, current and novel treatment strategies for the management of AD are comprehensively described, including some ongoing clinical trials and promising therapeutic agents. This information will provide an asset towards identifying personalized targets for better therapeutic outcomes. KW - atopic dermatitis KW - immune system KW - T cells KW - B cells KW - keratinocytes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241008 SN - 2073-4409 VL - 10 IS - 6 ER - TY - THES A1 - Hartmannsberger, Beate T1 - The pathogenicity and origin of auto-antibodies in chronic inflammatory demyelinating polyradiculoneuropathy and the identification of cutaneous biomarkers in Charcot-Marie-Tooth 1A patients T1 - Die Pathogenität und Herkunft von Auto-Antikörpern bei chronisch inflammatorischer demyelinisierender Polyradikuloneuropathie und die Identifikation von Biomarkern in Haut von Charcot-Marie-Tooth 1A Patienten N2 - Peripheral neuropathies can severely affect patients. Causes for the disease are diverse but can be classified into two main groups, acquired and hereditary. Examples for these two types are chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and Charcot-Marie-Tooth disease type 1A (CMT1A). CIDP has an estimated prevalence of about 1-9:100 000. In this pathogenetically hetereo- geneous patient group about 5-10% show auto-antibodies against the node of Ranvier and present with distinct symptoms. Treatment with rituximab - a monoclonal antibody that deletes CD20 + B cells - has been shown to be effective in a majority of auto-antibody as- sociated CIDP cases. This suggests that B cells and the produced auto-antibodies might be pathogenic. Previous studies delivered evidence that auto-antibodies alone can induce nerve damage. In this study, the aim was to investigate the pathomechanism of auto-antibodies in vivo and their exact origin: For the analysis of the pathogenicity of auto-antibodies, passive transfer experiments on Lewis rats were performed with whole IgG from a patient with anti-contactin-1 (CNTN1) IgG4 auto-antibodies. IgG was infused through an intrathe- cal catheter targeting the thoracic/lumbar region of the spine over a long-term, 3-week period. In a previous study of our group, the IgG from the same patient has been re- ported to have mild pathogenic effects when applied intraneurally into the sciatic nerve of Lewis rats. In this study however, binding of auto-antibodies to nerve roots could not be detected. Neither evaluation of electrophysiological properties after the injection period nor motor and sensory skills tested throughout the injection period showed differences when compared to animals infused with control IgG. This suggests that in the chronic intrathecal protocol anti-CNTN1 auto-antibodies did not have a pathogenic effect. In peripheral blood, four B cell subsets capable to produce antibodies were previously described: memory B cells, plasmablasts (PBs), B1 cells and CD20 + CD38 hi cells. For the identification of the B cell subsets that produce auto-antibodies, purification and sort protocols as well as an enzyme-linked immuno spot (ELISpot) assay for IgG and IgM were established successfully. Since unstimulated B cell subsets produced very small amounts of IgG and IgM, peripheral blood mononuclear cells (PBMCs) were stimulated with IL-2 and R848 for 72 h prior to sorting. While the memory B cell frequency decreased after stimulation, the frequency of CD20 + CD38 hi cells increased and the overall number of antibody-secreting cells was increased. When stimulating patient PBMCs for 10 days though, detection of anti-neurofascin-155 (NF155) auto-antibodies in supernatants by enzyme-linked immunosorbent assay (ELISA) was possible in two out of three patient samples. Even though cell sorting was feasible after 10 days of stimulation, detection of auto-antibodies could not be accomplished using antigen-specific ELISpot. Although the implementation of the cell sorting and purification protocol was successful, further adjustments of the antigen-specific ELISpot need to be performed. However, we could show that after 10 days of stimulation auto-antibody detection is possible by ELISA which helps to pre-screen if patient PBMC contain auto-reactive B cells. CMT1A has an estimated prevalence of 1:5000 and is caused by a duplication of the peripheral myelin protein 22 kDa (PMP22) gene. Patients suffer from distal weakness and muscle wasting leading even to wheelchair-dependency in some cases. Although different treatment options for CMT1A have been tested in previous clinical trials, none of them have been successful. In this study, the aim was to identify objective and reproducible outcome measures that assess the actual nerve damage in a large cohort of CMT1A patients by analyzing a series of parameters. Glabrous skin samples were collected from 48 CMT1A, 7 CIDP and 16 small fiber neuropathy patients and 45 healthy controls. 40-µm cryosections from the lateral part of the index finger were double-labeled using immunoflu- orescence to investigate cutaneous innervation. The disease severity which was assessed using the Charcot-Marie-Tooth Neuropathy Score version 2 (CMTNSv2) and ranged between mild to severe (3-27) correlated with age in CMT1A patients. Furthermore, the intraepidermal nerve fiber density (IENFD) was reduced in CMT1A patients in comparison to controls and correlated negatively with the disease severity. In controls however, the IENFD correlated inversely with age. Meissner corpuscle density tended to be reduced and correlated inversely with age in CMT1A patients. This was not observed in healthy controls though. Compared to controls, Merkel cell density was also reduced in CMT1A, while the fraction of denervated Merkel cell was increased and correlated with age. Further differences were revealed concerning the node of Ranvier. Paranodes were shortened and the fraction of long nodes was decreased in CMT1A patients compared to controls. These data suggest that the IENFD, the Meissner corpuscle and Merkel cell densities are possible candidates for outcome measures as they are associated with disease severity or age of patients. However, a reliable statement about the suitability as a marker for disease progression can not be made in this study since only six CMT1A patients agreed to give a follow-up biopsy two years later. N2 - Polyneuropathien können Patienten schwer betreffen. Krankheitsursachen sind vielfältig, können jedoch in zwei Hauptgruppen unterteilt werden. Sie können erworben oder genetisch bedingt sein. Beispiele für diese zwei Klassen sind die chronisch inflammatorische demyelinisierende Polyradikuloneuropathie (CIDP) und Charcot-Marie-Tooth-Erkrankung Typ 1A (CMT1A). CIDP hat eine geschätzte Häufigkeit von etwa 1-9:100 000. 5-10% der Patienten dieser pathogenetisch heterogenen Gruppe weisen Auto-Antikörper gegen den Ranvier’schen Schnürring auf und zeigen Symptome, die sich von anderen CIDP-Patienten unterscheiden. Es wurde gezeigt, dass die Behandlung mit Rituximab - einem monoklonalen Antiköper, der CD20+ B-Zellen deletiert - bei der Mehrheit der Auto-Antikörper-assoziierten CIDP-Fälle wirksam ist. Das deutet darauf hin, dass B-Zellen und die produzierten Auto-Antikörper pathogenetisch sein könnten. Frühere Studien liefern Beweise, dass Auto-Antikörper allein Nervenschädigungen verursachen können. Ziel dieser Studie war es, den Pathomechanismus der Auto-Antikörper in vivo zu untersuchen und deren genaue Herkunft zu ermitteln: Um die Pathogenität von Auto-Antikörpern zu ermitteln, wurden Passiv-Transfer-Versuche an Lewis Ratten mit Gesamt-IgG einer Patientin mit anti-CNTN1 IgG4 Auto-Antikörpern durchgeführt. Das IgG wurde mittels eines intrathekalen Katheters, der am thorakalen/lumbalen Abschnitt der Wirbelsäule endete, über eine langzeitige, 3-wöchige Zeitspanne injiziert. Eine frühere Studie unserer Arbeitsgruppe hat gezeigt, dass das IgG derselben Patientin milde pathogenetische Effekte hatte, als diese intraneural in den Ischiasnerv von Lewis Ratten appliziert wurden. In dieser Studie jedoch konnten keine Bindungen von Auto-Antikörpern an die Nervenwurzel ermittelt werden. Patienten-Tiere zeigten keine Unterschiede zu Tieren auf, die mit Kontroll-IgG behandelt wurden, weder in der Untersuchung von elektrophysiologischen Eigenschaften nach der Injektionszeit noch bezüglich motorischer und sensorischer Fähigkeiten, die auch während der Injektionszeit getestet wurden. Dies deutet darauf hin, dass anti-CNTN1 Auto-Antikörper keinen pathogenetischen Effekt bei Anwendung des chronischen, intrathekalen Protokolls hatten. In peripherem Blut wurden vier B-Zell-Subgruppen beschrieben, die fähig sind, Antikörper zu produzieren: Gedächtnis-B-Zellen, Plasmablasten, B1-Zellen und CD20+ CD38hi B-Zellen. Um die Auto-Antikörper-produzierenden B-Zell-Subtypen zu identifizieren, wurden Protokolle zur Anreicherung und zum Sortieren sowie zum ELISpot für IgG und IgM erfolgreich etabliert. Da die Produktion von IgG- und IgM-Antikörpern in unstimulierten B-Zell-Subtypen sehr gering war, wurden mononukleäre Zellen des peripheren Blutes (PBMCs, peripheral blood mononuclear cells) mit IL-2 und R848 vor dem Sorten für 72 h stimuliert. Während die Häufigkeit von Gedächtnis-B-Zellen nach der Stimulation abnahm, ist die Häufigkeit von CD20+ CD38hi B-Zellen gestiegen und die Gesamtzahl an Antikörper-sezernierenden Zellen hat zugenommen. Wurden Patienten PBMCs jedoch für 10 Tage stimuliert, konnten Auto-Antikörper in Überständen mittels ELISA in zwei von drei Patientenproben ermittelt werden. Obwohl das Sorten nach 10-tägiger Stimulation immernoch durchführbar war, war die Detektion von Auto-Antikörper durch antigenspezifischen ELISpot nicht erfolgreich. Trotz der gelungenen Etablierung der Anreicherungs- und Sortierungsprotokolle müssen weitere Einstellarbeiten am antigenspezifischen ELISpot-Protokoll vorgenommen werden. Trotzdem konnten wir zeigen, dass die Detektion von Auto-Antikörpern nach 10-tägiger PBMC-Stimulation mittels ELISA möglich ist, was dabei hilft zu ermitteln, ob Patienten-PBMCs auto-reaktive B-Zellen enthalten. CMT1A hat eine geschätzte Häufigkeit von etwa 1:5000 und wird durch eine Duplikation des PMP22-Gens (peripheral myelin protein 22 kDa) verursacht. Patienten leiden unter distaler Schwäche und Muskelschwund, was in manchen Fällen sogar zu Rollstuhlabhängigkeit führen kann. Obwohl verschiedene Behandlungsmöglichkeiten für CMT1A in früheren Studien getestet wurden, ist keine von ihnen erfolgreich gewesen. Das Ziel dieser Studie war es, objektive und reproduzierbare Outcome-Parameter, die den tatsächlichen Nervenschaden bemessen, in einer großen Kohorte von CMT1A-Patienten zu identifizieren, wozu eine Reihe an Parametern analysiert wurde. Von 48 CMT1A-, 7 CIDP- und 16 small fiber neuropathy- Patienten und 45 gesunden Kontrollen wurden unbehaarte Hautproben der lateralen Region des Zeigefingers entnommen. An diesen wurden Doppelfluoreszenzfärbungen vorgenommen, um die kutane Innervation zu untersuchen. Der Krankheitsgrad der CMT1A-Gruppe, der durch den Charcot-Marie-Tooth Neuropathy Score version 2 eingestuft wurde, erstreckte sich von mild bis schwer (3-27) und korrelierte mit dem Alter der Patienten. Zudem war die intraepidermale Nervenfaserdichte (IENFD) reduziert in CMT1A-Patienten im Vergleich mit gesunden Kontrollen und korrelierte invers mit dem Krankheitsgrad der Patienten. In gesunden Kontrollen korrelierte jedoch die IENFD invers mit dem Alter. Die Dichte der Meissner-Körperchen neigte zu Abnahme in CMT1A-Patienten und korrelierte negativ mit deren Alter, was nicht in gesunden Kontrollen beobachtet wurde. Im Vergleich mit gesunden Kontrollen war die Dichte der Merkel-Zellen ebenfalls verringert in CMT1A, während der Anteil von denervierten Merkel-Zellen erhöht war und mit dem Alter korrelierte. Weitere Unterschiede wurden am Ranvier’schen Schnürring festgestellt. Paranodale Regionen waren verkürzt und der Anteil von langen Schnürringen war erhöht in CMT1A-Patienten im Vergleich zu den Kontrollen. Diese Daten deuten darauf hin, dass die IENFD, die Dichten der Meissner-Körperchen und Merkel-Zellen potentielle Kandidaten für Outcome-Parameter sind, da sie entweder mit dem Krankheitsgrad oder dem Alter zusammenhängen. Jedoch kann in dieser Studie keine verlässliche Aussage über die Eignung dieser Parameter als Marker für den Krankheitsfortschritt gemacht werden, da zwei Jahre später nur sechs CMT1A-Patienten zu einer Folgebiopsie eingewilligt haben. KW - CMT1A KW - polyradiculoneuropathy KW - Charcot-Marie-Tooth 1A KW - skin KW - autoantibody KW - skin biopsy KW - B cells KW - CIDP Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211451 ER - TY - JOUR A1 - Dirks, Johannes A1 - Fischer, Jonas A1 - Haase, Gabriele A1 - Holl-Wieden, Annette A1 - Hofmann, Christine A1 - Girschick, Hermann A1 - Morbach, Henner T1 - CD21\(^{lo/−}\)CD27\(^−\)IgM\(^−\) Double-Negative B Cells Accumulate in the Joints of Patients With Antinuclear Antibody-Positive Juvenile Idiopathic Arthritis JF - Frontiers in Pediatrics N2 - Juvenile idiopathic arthritis (JIA) encompasses a heterogeneous group of diseases. The appearance of antinuclear antibodies (ANAs) in almost half of the patients suggests B cell dysregulation as a distinct pathomechanism in these patients. Additionally, ANAs were considered potential biomarkers encompassing a clinically homogenous subgroup of JIA patients. However, in ANA+ JIA patients, the site of dysregulated B cell activation as well as the B cell subsets involved in this process is still unknown. Hence, in this cross-sectional study, we aimed in an explorative approach at characterizing potential divergences in B cell differentiation in ANA+ JIA patients by assessing the distribution of peripheral blood (PB) and synovial fluid (SF) B cell subpopulations using flow cytometry. The frequency of transitional as well as switched-memory B cells was higher in PB of JIA patients than in healthy controls. There were no differences in the distribution of B cell subsets between ANA- and ANA+ patients in PB. However, the composition of SF B cells was different between ANA- and ANA+ patients with increased frequencies of CD21\(^{lo/−}\)CD27\(^−\)IgM\(^−\) “double negative” (DN) B cells in the latter. DN B cells might be a characteristic subset expanding in the joints of ANA+ JIA patients and are potentially involved in the antinuclear immune response in these patients. The results of our explorative study might foster further research dissecting the pathogenesis of ANA+ JIA patients. KW - juvenile idiopathic arthritis KW - B cells KW - antinuclear antibodies KW - synovial fluid KW - double negative B cells Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236286 SN - 2296-2360 VL - 9 ER - TY - JOUR A1 - Traub, Jan A1 - Husseini, Leila A1 - Weber, Martin S. T1 - B cells and antibodies as targets of therapeutic intervention in neuromyelitis optica spectrum disorders JF - Pharmaceuticals N2 - The first description of neuromyelitis optica by Eugène Devic and Fernand Gault dates back to the 19th century, but only the discovery of aquaporin-4 autoantibodies in a major subset of affected patients in 2004 led to a fundamentally revised disease concept: Neuromyelits optica spectrum disorders (NMOSD) are now considered autoantibody-mediated autoimmune diseases, bringing the pivotal pathogenetic role of B cells and plasma cells into focus. Not long ago, there was no approved medication for this deleterious disease and off-label therapies were the only treatment options for affected patients. Within the last years, there has been a tremendous development of novel therapies with diverse treatment strategies: immunosuppression, B cell depletion, complement factor antagonism and interleukin-6 receptor blockage were shown to be effective and promising therapeutic interventions. This has led to the long-expected official approval of eculizumab in 2019 and inebilizumab in 2020. In this article, we review current pathogenetic concepts in NMOSD with a focus on the role of B cells and autoantibodies as major contributors to the propagation of these diseases. Lastly, by highlighting promising experimental and future treatment options, we aim to round up the current state of knowledge on the therapeutic arsenal in NMOSD. KW - neuromyelitis optica spectrum disorders KW - B cells KW - antibodies KW - eculizumab KW - ravulizumab KW - inebilizumab KW - tocilizumab KW - satralizumab KW - ublituximab Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222957 SN - 1424-8247 VL - 14 IS - 1 ER - TY - JOUR A1 - Sánchez-Maldonado, Jose Manuel A1 - Moñiz-Díez, Ana A1 - ter Horst, Rob A1 - Campa, Daniele A1 - Cabrera-Serrano, Antonio José A1 - Martínez-Bueno, Manuel A1 - Garrido-Collado, María del Pilar A1 - Hernández-Mohedo, Francisca A1 - Fernández-Puerta, Laura A1 - López-Nevot, Miguel Ángel A1 - Cunha, Cristina A1 - González-Sierra, Pedro Antonio A1 - Springer, Jan A1 - Lackner, Michaela A1 - Alcazar-Fuoli, Laura A1 - Fianchi, Luana A1 - Aguado, José María A1 - Pagano, Livio A1 - López-Fernández, Elisa A1 - Clavero, Esther A1 - Potenza, Leonardo A1 - Luppi, Mario A1 - Moratalla, Lucia A1 - Solano, Carlos A1 - Sampedro, Antonio A1 - Cuenca-Estrella, Manuel A1 - Lass-Flörl, Cornelia A1 - Canzian, Federico A1 - Loeffler, Juergen A1 - Li, Yang A1 - Einsele, Hermann A1 - Netea, Mihai G. A1 - Vázquez, Lourdes A1 - Carvalho, Agostinho A1 - Jurado, Manuel A1 - Sainz, Juan T1 - Polymorphisms within the TNFSF4 and MAPKAPK2 loci influence the risk of developing invasive aspergillosis: a two-stage case control study in the context of the aspBIOmics consortium JF - Journal of Fungi N2 - Here, we assessed whether 36 single nucleotide polymorphisms (SNPs) within the TNFSF4 and MAPKAPK2 loci influence the risk of developing invasive aspergillosis (IA). We conducted a two-stage case control study including 911 high-risk patients diagnosed with hematological malignancies that were ascertained through the aspBIOmics consortium. The meta-analysis of the discovery and replication populations revealed that carriers of the TNFSF4\(_{rs7526628T/T}\) genotype had a significantly increased risk of developing IA (p = 0.00022). We also found that carriers of the TNFSF4\(_{rs7526628T}\) allele showed decreased serum levels of TNFSF14 protein (p = 0.0027), and that their macrophages had a decreased fungicidal activity (p = 0.048). In addition, we observed that each copy of the MAPKAPK2\(_{rs12137965G}\) allele increased the risk of IA by 60% (p = 0.0017), whereas each copy of the MAPKAPK2\(_{rs17013271T}\) allele was estimated to decrease the risk of developing the disease (p = 0.0029). Mechanistically, we found that carriers of the risk MAPKAPK2\(_{rs12137965G}\) allele showed increased numbers of CD38+IgM-IgD- plasmablasts in blood (p = 0.00086), whereas those harboring two copies of the allele had decreased serum concentrations of thymic stromal lymphopoietin (p = 0.00097). Finally, we also found that carriers of the protective MAPKAPK2\(_{rs17013271T}\) allele had decreased numbers of CD27-IgM-IgD- B cells (p = 0.00087) and significantly lower numbers of CD14+ and CD14+CD16- cells (p = 0.00018 and 0.00023). Altogether, these results suggest a role of the TNFSF4 and MAPKAPK2 genes in determining IA risk. KW - invasive aspergillosis KW - TNFSF4 KW - MAPKAPK2 KW - genetic susceptibility KW - B cells KW - monocytes KW - serum biomarkers KW - TSLP KW - TNFSF14 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220107 SN - 2309-608X VL - 7 IS - 1 ER - TY - JOUR A1 - Gernert, Michael A1 - Tony, Hans-Peter A1 - Schwaneck, Eva Christina A1 - Fröhlich, Matthias A1 - Schmalzing, Marc T1 - Low B cell counts as risk factor for infectious complications in systemic sclerosis after autologous hematopoietic stem cell transplantation JF - Arthritis Research & Therapy N2 - Background Autologous hematopoietic stem cell transplantation (aHSCT) is a treatment option for a selected group of systemic sclerosis (SSc) patients with good available evidence but can be associated with considerable morbidity and mortality. The aim of this study was to describe infectious complications and distinct immune reconstitution patterns after aHSCT and to detect risk factors in lymphocyte subsets, which are associated with an elevated rate of infections after aHSCT. Methods Seventeen patients with SSc were included in this single-center retrospective cohort study. Clinical and laboratory data was collected before and for 12 months after aHSCT, including immunophenotyping of peripheral whole blood by fluorescence-activated cell sorting. Results Cytomegalovirus (CMV) reactivations were common in CMV-IgG-positive patients (50%) and needed treatment. Mycotic infections occurred in 17.6%. One patient died (resulting in a mortality of 5.9%) due to pneumonia with consecutive sepsis. All patients showed decreased T helper cells (CD3\(^+\)/CD4\(^+\)) and within the B cell compartment decreased post-switched memory B cells (CD19\(^+\)/CD27\(^+\)/IgD\(^-\)) and elevated naive B cells (CD19\(^+\)/CD27\(^-\)/IgD\(^+\)) until 12 months after aHSCT. Patients who developed infections had significantly lower B cells before aHSCT than patients who did not develop infections. Conclusion After aHSCT, monitoring for infectious complications, especially for CMV reactivations, is crucial as the reconstitution of the immune system takes longer than 12 months. Low peripheral B cells might be a risk factor for an elevated infection rate. KW - Systemic sclerosis KW - Autologous hematopoietic stem cell transplantation KW - Infectious complications KW - CMV reactivation KW - B cells Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229962 VL - 22 ER - TY - JOUR A1 - Mahmood, Zafar A1 - Schmalzing, Marc A1 - Dörner, Thomas A1 - Tony, Hans-Peter A1 - Muhammad, Khalid T1 - Therapeutic Cytokine Inhibition Modulates Activation and Homing Receptors of Peripheral Memory B Cell Subsets in Rheumatoid Arthritis Patients JF - Frontiers in Immunology N2 - Memory B cells have known to play an important role in the pathogenesis of rheumatoid arthritis (RA). With the emergence of B cell-targeted therapies, the modulation of memory B cells appears to be a key therapeutic target. Human peripheral memory B cells can be distinguished based on the phenotypic expression of CD27 and IgD, characterizing the three major B cell subpopulations: CD27+IgD+ pre-switch, CD27+IgD- post-switch, and CD27-IgD- double-negative memory B cells. We evaluated different memory cell populations for activation markers (CD95 and Ki-67) and chemokine receptors (CXCR3 and 4) expressing B cells in active RA, as well as under IL6-R blockade by tocilizumab (TCZ) and TNF-α blockade by adalimumab (ADA). Memory B cells were phenotypically analyzed from RA patients at baseline, week 12, and week 24 under TCZ or ADA treatment, respectively. Using flow cytometry, surface expression of CD95, intracellular Ki-67, and surface expressions of CXCR3 and CXCR4 were determined. Compared with healthy donors (n = 40), the phenotypic analysis of RA patients (n = 80) demonstrated that all three types of memory B cells were activated in RA patients. Surface and intracellular staining of B cells showed a significantly higher percentage of CD95+ (p < 0.0001) and Ki-67+ (p < 0.0001) cells, with numerically altered CXCR3+ and CXCR4+ cells in RA. CD95 and Ki-67 expressions were highest in post-switch memory B cells, whereas CD19+CXCR3+ and CD19+CXCR4+ expressing cells were substantially higher in the pre-switch compartment. In all subsets of the memory B cells, in vivo IL-6R, and TNF-α blockade significantly reduced the enhanced expressions of CD95 and Ki-67. Based on our findings, we conclude that the three major peripheral memory B cell populations, pre-, post-switch, and double-negative B cells, are activated in RA, demonstrating enhanced CD95 and Ki-67 expressions, and varied expression of CXCR3 and CXCR4 chemokine receptors when compared with healthy individuals. This activation can be efficaciously modulated under cytokine inhibition in vivo. KW - B cells KW - inflammation KW - adalimumab KW - tocilizumab (IL-6 inhibitor) KW - memory B cells KW - rheumatoid arhritis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212380 SN - 1664-3224 VL - 11 ER - TY - JOUR A1 - Gernert, Michael A1 - Tony, Hans-Peter A1 - Schwaneck, Eva Christina A1 - Gadeholt, Ottar A1 - Schmalzing, Marc T1 - Autologous hematopoietic stem cell transplantation in systemic sclerosis induces long-lasting changes in B cell homeostasis toward an anti-inflammatory B cell cytokine pattern JF - Arthritis Research & Therapy N2 - Background Autologous hematopoietic stem cell transplantation (aHSCT) is performed in patients with aggressive forms of systemic sclerosis (SSc). The profile of B cell reconstitution after aHSCT is not fully understood. The aim of this study was to investigate changes of B cell subsets and cytokine production of B cells in patients with SSc after aHSCT. Methods Peripheral blood of six patients with SSc was collected at defined intervals up to 16 months after aHSCT. Immunophenotyping was performed, and B cell function was determined by measuring cytokine secretion in supernatants of stimulated B cell cultures. Results Within 1 month after aHSCT, a peak in the percentage of CD38\(^{++}\)/CD10\(^+\)/IgD\(^+\) transitional B cells and CD38\(^{++}\)/CD27\(^{++}\)/IgD\(^−\) plasmablasts was detected. Long-term changes persisted up to 14 months after aHSCT and showed an increased percentage of total B cells; the absolute B cell number did not change significantly. Within the B cell compartment, an increased CD27/IgD\(^+\) naïve B cell percentage was found whereas decreased percentages of CD27\(^+\)/IgD\(^+\) pre-switched memory, CD27\(^+\)/IgD\(^−\) post-switched memory, and CD27\(^−\) /IgD\(^−\) double-negative B cells were seen after aHSCT. Cytokine secretion in B cell cultures showed significantly increased IL-10 concentrations 13 to 16 months after aHSCT. Conclusion A changed composition of the B cell compartment is present for up to 14 months after aHSCT indicating positive persisting effects of aHSCT on B cell homeostasis. The cytokine secretion profile of B cells changes in the long term and shows an increased production of the immune regulatory cytokine IL-10 after aHSCT. These findings might promote the clinical improvements after aHSCT in SSc patients. KW - Systemic sclerosis KW - B cells KW - Memory B cells KW - naïve B cells KW - Autologous hematopoietic stem cell transplantation KW - Interleukin-10 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201004 VL - 21 ER - TY - JOUR A1 - Simon, Micha A1 - Ipek, Rojda A1 - Homola, György A. A1 - Rovituso, Damiano M. A1 - Schampel, Andrea A1 - Kleinschnitz, Christoph A1 - Kuerten, Stefanie T1 - Anti-CD52 antibody treatment depletes B cell aggregates in the central nervous system in a mouse model of multiple sclerosis JF - Journal of Neuroinflammation N2 - Background: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) for which several new treatment options were recently introduced. Among them is the monoclonal anti-CD52 antibody alemtuzumab that depletes mainly B cells and T cells in the immune periphery. Considering the ongoing controversy about the involvement of B cells and in particular the formation of B cell aggregates in the brains of progressive MS patients, an in-depth understanding of the effects of anti-CD52 antibody treatment on the B cell compartment in the CNS itself is desirable. Methods: We used myelin basic protein (MBP)-proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 (B6) mice as B cell-dependent model of MS. Mice were treated intraperitoneally either at the peak of EAE or at 60 days after onset with 200 μg murine anti-CD52 vs. IgG2a isotype control antibody for five consecutive days. Disease was subsequently monitored for 10 days. The antigen-specific B cell/antibody response was measured by ELISPOT and ELISA. Effects on CNS infiltration and B cell aggregation were determined by immunohistochemistry. Neurodegeneration was evaluated by Luxol Fast Blue, SMI-32, and Olig2/APC staining as well as by electron microscopy and phosphorylated heavy neurofilament serum ELISA. Results: Treatment with anti-CD52 antibody attenuated EAE only when administered at the peak of disease. While there was no effect on the production of MP4-specific IgG, the treatment almost completely depleted CNS infiltrates and B cell aggregates even when given as late as 60 days after onset. On the ultrastructural level, we observed significantly less axonal damage in the spinal cord and cerebellum in chronic EAE after anti-CD52 treatment. Conclusion: Anti-CD52 treatment abrogated B cell infiltration and disrupted existing B cell aggregates in the CNS. KW - Alemtuzumab KW - B cells KW - CD52 KW - CNS KW - EAE KW - MS Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176120 VL - 15 IS - 225 ER - TY - JOUR A1 - Muhammad, Khalid A1 - Rudolf, Ronald A1 - Pham, Duong Anh Thuy A1 - Klein-Hessling, Stefan A1 - Takata, Katsuyoshi A1 - Matsushita, Nobuko A1 - Ellenrieder, Volker A1 - Kondo, Eisaku A1 -  Serfling, Edgar T1 - Induction of Short NFATc1/αA Isoform Interferes with Peripheral B Cell Differentiation JF - Frontiers in Immunology N2 - In lymphocytes, immune receptor signals induce the rapid nuclear translocation of preformed cytosolic NFAT proteins. Along with co-stimulatory signals, persistent immune receptor signals lead to high levels of NFATc1/αA, a short NFATc1 isoform, in effector lymphocytes. Whereas NFATc1 is not expressed in plasma cells, in germinal centers numerous centrocytic B cells express nuclear NFATc1/αA. When overexpressed in chicken DT40 B cells or murine WEHI 231 B cells, NFATc1/αA suppressed their cell death induced by B cell receptor signals and affected the expression of genes controlling the germinal center reaction and plasma cell formation. Among those is the Prdm1 gene encoding Blimp-1, a key factor of plasma cell formation. By binding to a regulatory DNA element within exon 1 of the Prdm1 gene, NFATc1/αA suppresses Blimp-1 expression. Since expression of a constitutive active version of NFATc1/αA interfered with Prdm1 RNA expression, LPS-mediated differentiation of splenic B cells to plasmablasts in vitro and reduced immunoglobulin production in vivo, one may conclude that NFATc1/αA plays an important role in controlling plasmablast/plasma cell formation. KW - B cells KW - DT40 cells KW - germinal center KW - NFATc1 KW - plasmablasts KW - plasma cells Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197501 SN - 1664-3224 VL - 9 IS - 32 ER -