TY - THES A1 - Wiedenmann, Jonas T1 - Induced topological superconductivity in HgTe based nanostructures T1 - Induzierte topologische Supraleitung in HgTe basierten Nanostrukturen N2 - This thesis describes the studies of topological superconductivity, which is predicted to emerge when pair correlations are induced into the surface states of 2D and 3D topolog- ical insulators (TIs). In this regard, experiments have been designed to investigate the theoretical ideas first pioneered by Fu and Kane that in such system Majorana bound states occur at vortices or edges of the system [Phys. Rev. Lett. 100, 096407 (2008), Phys. Rev. B 79, 161408 (2009)]. These states are of great interest as they constitute a new quasiparticle which is its own antiparticle and can be used as building blocks for fault tolerant topological quantum computing. After an introduction in chapter 1, chapter 2 of the thesis lays the foundation for the understanding of the field of topology in the context of condensed matter physics with a focus on topological band insulators and topological superconductors. Starting from a Chern insulator, the concepts of topological band theory and the bulk boundary corre- spondence are explained. It is then shown that the low energy Hamiltonian of mercury telluride (HgTe) quantum wells of an appropriate thickness can be written as two time reversal symmetric copies of a Chern insulator. This leads to the quantum spin Hall effect. In such a system, spin-polarized one dimensional conducting states form at the edges of the material, while the bulk is insulating. This concept is extended to 3D topological insulators with conducting 2D surface states. As a preliminary step to treating topological superconductivity, a short review of the microscopic theory of superconductivity, i.e. the theory of Bardeen, Cooper, and Shrieffer (BCS theory) is presented. The presence of Majorana end modes in a one dimensional superconducting chain is explained using the Kitaev model. Finally, topological band insulators and conventional superconductivity are combined to effectively engineer p-wave superconductivity. One way to investigate these states is by measuring the periodicity of the phase of the Josephson supercurrent in a topological Josephson junction. The signature is a 4π-periodicity compared to the 2π-periodicity in conventional Josephson junctions. The proof of the presence of this effect in HgTe based Josephson junction is the main goal of this thesis and is discussed in chapters 3 to 6. Chapter 3 describes in detail the transport of a 3D topological insulator based weak link under radio-frequency radiation. The chapter starts with a review of the state of research of (i) strained HgTe as 3D topological insulator and (ii) the progress of induc- ing superconducting correlations into the topological surface states and the theoretical predictions of 3D TI based Josephson junctions. Josephson junctions based on strained HgTe are successfully fabricated. Before studying the ac driven Josephson junctions, the dc transport of the devices is analysed. The critical current as a function of temperature is measured and it is possible to determine the induced superconducting gap. Under rf illumination Shapiro steps form in the current voltage characteristic. A missing first step at low frequencies and low powers is found in our devices. This is a signature of a 4π-periodic supercurrent. By studying the device in a wide parameter range - as a 147148 SUMMARY function of frequency, power, device geometry and magnetic field - it is shown that the results are in agreement with the presence of a single gapless Andreev doublet and several conventional modes. Chapter 4 gives results of the numerical modelling of the I −V dynamics in a Josephson junction where both a 2π- and a 4π-periodic supercurrents are present. This is done in the framework of an equivalent circuit representation, namely the resistively shunted Josephson junction model (RSJ-model). The numerical modelling is in agreement with the experimental results in chapter 3. First, the missing of odd Shapiro steps can be understood by a small 4π-periodic supercurrent contribution and a large number of modes which have a conventional 2π-periodicity. Second, the missing of odd Shapiro steps occurs at low frequency and low rf power. Third, it is shown that stochastic processes like Landau Zener tunnelling are most probably not responsible for the 4π contribution. In a next step the periodicity of Josephson junctions based on quantum spin Hall insulators using are investigated in chapter 5. A fabrication process of Josephson junctions based on inverted HgTe quantum wells was successfully developed. In order to achieve a good proximity effect the barrier material was removed and the superconductor deposited without exposing the structure to air. In a next step a gate electrode was fabricated which allows the chemical potential of the quantum well to be tuned. The measurement of the diffraction pattern of the critical current Ic due to a magnetic field applied perpendicular to the sample plane was conducted. In the vicinity to the expected quantum spin Hall phase, the pattern resembles that of a superconducting quantum interference device (SQUID). This shows that the current flows predominantly on the edges of the mesa. This observation is taken as a proof of the presence of edge currents. By irradiating the sample with rf, missing odd Shapiro steps up to step index n = 9 have been observed. This evidences the presence of a 4π-periodic contribution to the supercurrent. The experiment is repeated using a weak link based on a non-inverted HgTe quantum well. This material is expected to be a normal band insulator without helical edge channels. In this device, all the expected Shapiro steps are observed even at low frequencies and over the whole gate voltage range. This shows that the observed phenomena are directly connected to the topological band structure. Both features, namely the missing of odd Shapiro steps and the SQUID like diffraction pattern, appear strongest towards the quantum spin Hall regime, and thus provide evidence for induced topological superconductivity in the helical edge states. A more direct way to probe the periodicity of the Josephson supercurrent than using Shapiro steps is the measurement of the emitted radiation of a weak link. This experiment is presented in chapter 6. A conventional Josephson junction converts a dc bias V to an ac current with a characteristic Josephson frequency fJ = eV /h. In a topological Josephson junction a frequency at half the Josephson frequency fJ /2 is expected. A new measurement setup was developed in order to measure the emitted spectrum of a single Josephson junction. With this setup the spectrum of a HgTe quantum well based Josephson junction was measured and the emission at half the Josephson frequency fJ /2 was detected. In addition, fJ emission is also detected depending on the gate voltage and detection frequency. The spectrum is again dominated by half the Josephson emission at low voltages while the conventional emission is determines the spectrum at high voltages. A non-inverted quantum well shows only conventional emission over the whole gateSUMMARY 149 voltage and frequency range. The linewidth of the detected frequencies gives a measure on the lifetime of the bound states: From there, a coherence time of 0.3–4ns for the fJ /2 line has been deduced. This is generally shorter than for the fJ line (3–4ns). The last part of the thesis, chapter 7, reports on the induced superconducting state in a strained HgTe layer investigated by point-contact Andreev reflection spectroscopy. For the experiment, a HgTe mesa was fabricated with a small constriction. The diameter of the orifice was chosen to be smaller than the mean free path estimated from magne- totransport measurements. Thus one gets a ballistic point-contact which allows energy resolved spectroscopy. One part of the mesa is covered with a superconductor which induces superconducting correlations into the surface states of the topological insulator. This experiment therefore probes a single superconductor normal interface. In contrast to the Josephson junctions studied previously, the geometry allows the acquisition of energy resolved information of the induced superconducting state through the measurement of the differential conductance dI/dV as a function of applied dc bias for various gate voltages, temperatures and magnetic fields. An induced superconducting order parame- ter of about 70µeV was extracted but also signatures of the niobium gap at the expected value around Δ Nb ≈ 1.1meV have been found. Simulations using the theory developed by Blonder, Tinkham and Klapwijk and an extended model taking the topological surface states into account were used to fit the data. The simulations are in agreement with a small barrier at the topological insulator-induced topological superconductor interface and a high barrier at the Nb to topological insulator interface. To understand the full con- ductance curve as a function of applied voltage, a non-equilibrium driven transformation is suggested. The induced superconductivity is suppressed at a certain bias value due to local electron population. In accordance with this suppression, the relevant scattering regions change spatially as a function of applied bias. To conclude, it is emphasized that the experiments conducted in this thesis found clear signatures of induced topological superconductivity in HgTe based quantum well and bulk devices and opens up the avenue to many experiments. It would be interesting to apply the developed concepts to other topological matter-superconductor hybrid systems. The direct spectroscopy and manipulation of the Andreev bound states using circuit quantum electrodynamic techniques should be the next steps for HgTe based samples. This was already achieved in superconducting atomic break junctions by the group in Saclay [Science 2015, 349, 1199-1202 (2015)]. Another possible development would be the on-chip detection of the emitted spectrum as a function of the phase φ through the junction. In this connection, the topological junction needs to be shunted by a parallel ancillary junction. Such a setup would allow the current phase relation I(φ) directly and the lifetime of the bound states to be measured directly. By coupling this system to a spectrometer, which can be another Josephson junction, the energy dependence of the Andreev bound states E(φ) could be obtained. The experiments on the Andreev reflection spectroscopy described in this thesis could easily be extended to two dimensional topological insulators and to more complex geometries, like a phase bias loop or a tunable barrier at the point-contact. This work might also be useful for answering the question how and why Majorana bound states can be localized in quantum spin Hall systems. N2 - Die vorliegende Dissertation befasst sich mit der experimentellen Untersuchung von topologischer Supraleitung, die durch die Kombination von konventionellen Supraleitern mit 2D- und 3D- topologischen Isolatoren (TI) entsteht. Diesbezüglich wurden Experi- mente durchgeführt, die auf zwei bahnbrechenden Arbeiten von Fu und Kane [Phys. Rev. Lett. 100, 096407 (2008), Phys. Rev. B 79, 161408 (2009)] aufbauen. Diesen zufolge wird in supraleitenden topologischen Isolatoren ein neuartiges Quasiteilchen, ein sogenanntes Majorana-Fermion, vorhergesagt. Das große Interesse an diesem Teilchen beruht auf des- sen besonderen Eigenschaften. Es sind Fermionen mit halbzahligen Spin, jedoch besitzen sie keine Ladung und es ist gleichzeitig sein eigenes Antiteilchen. Darüber hinaus besitzt das Teilchen im Vergleich zu konventionellen Fermionen eine andere Austauschstatistik und zählt daher zu den sogenannten nicht-abelschen Anyonen. Aufgrund dieser Eigen- schaften wurde vorhergesagt, dass sie für weniger fehleranfällige Quantenbits als Bauteile für einen Quantencomputer verwendet werden können. Nach einer Einleitung in Kapitel 1 folgt in Kapitel 2 eine Einführung in das Konzept von Topologie in der Festkörperphysik. Der Schwerpunkt liegt dabei auf zwei Materialklassen, topologischen Isolatoren und topologische Supraleiter. Zunächst wird ein Zweibandmo- dell, der Chern-Isolator, beschrieben, um das Konzept von topologischen Isolatoren und die Entstehung von Oberflächenzuständen darzulegen. Es ist möglich die Bandstruktur von Quecksilbertellurid- (HgTe-) Quantentrögen als zwei zeitumkehrinvariante Kopien des Chern-Isolators zu interpretieren, was zu einem 2D topologischen Isolator führt. Das Konzept von 2D-TIs wird auf drei Dimensionen erweitert. Eine Einführung in konventio- nelle Supraleitung und insbesondere die mikroskopische Theorie von Bardeen, Cooper und Schrieffer dient einem pädagogischen Zugang zur topologischen Supraleitung. Eine eindimensionale supraleitenden Kette, entwickelt von Alexei Kitaev, dient der Erklärung für die Entstehung von Majorana-Fermionen in p-Wellen Supraleitern. Es ist möglich diesen Zustand durch die Kombination von konventionellen Supraleitern und topologi- schen Isolatoren zu verwirklichen. In dieser Dissertation wird die erwartet topologische Supraleitung in einem sogenannten Josephson-Kontakt untersucht. Dabei wurde vorher- gesagt, dass in einem “topologischen Josephson-Kontakt”die Phase des Suprastromes eine 4π-Periodizität besitzt, während ein normaler Josephson-Kontakt 2π-periodisch ist. Ziel dieser Arbeit ist der experimentelle Nachweis der 4π-Periodizität des Suprastroms in Josephson-Kontakten, die auf HgTe-Bauelementen beruhen. Als Methodik eignet sich die Messung der Shapiro-Plateaus und der Emission des Josephson-Kontaktes an, die ausführlich in den Kapiteln 3 bis 6 werden. In Kapitel 3 wird der Transport in Josephson-Kontakten, die auf dem dreidimensio- nalen topologischen Isolator HgTe beruhen unter Einfluss von Mikrowellenstrahlung detailliert ausgeführt. Dieser Teil beginnt mit einem Überblick über die Eigenschaften von HgTe als dreidimensionaler topologischer Isolator und zeigt insbesondere den Nachweis der Oberfächenleitung von relativistischen Elektronen auf. Des Weiteren wird der Stand der Forschung von Josephson-Kontakten auf diesem Materialsystem dargelegt. In solchen Strukturen werden nämlich aufgrund von Majorana-Fermionen gebundene Andreev- Zustände erwartet, welche sich in der Mitte der supraleitenden Bandlücke (bei null Energie) kreuzen. Sie werden als “gapless Andreev Bound States”bezeichnet. Die Existenz dieser Zustände kann durch den Nachweis einer 4π-Periodizität der Phase des Supra- stroms bewiesen werden. Da die endliche Lebensdauer dieser Zustände “langsamen”dc- Messungen den Nachweis der Periodizität nicht erlauben, wird Strahlung im Gigahertz Frequenzbereich verwendet. Josephson-Kontakte aus 3D-HgTe-Heterostrukturen werden erfolgreich lithografiert. Zunächst werden die Strukturen mit dc-Messungen charakte- risiert und es wird gezeigt, dass der Suprastrom einen Josephson-Effekt aufweist. Die Temperaturabhängigkeit des kritischen Stroms wird simuliert, wodurch die Bestimmung der Größe der induzierten supraleitenden Bandlücke ermöglicht wird. Durch Mikrowel- lenstrahlung entstehen Shapiro-Plateaus in der Strom-Spannungskennlinie I −V -Kurve. Der Spannungsabstand von zwei aufeinander folgenden Plateaus spiegelt die Periodizität des Josephsonstroms wider. Zu erwarten wäre, dass der Abstand in einem topologischen Josephson-Kontakt im Vergleich zu einem konventionellen Josephson-Kontakt doppelt so groß ist (oder anders formuliert: die ungeradzahligen Plateau-Indizes fehlen). In den Strom-Spannungskennlinien wird jedoch beobachtet, dass der erste erwartete Schritt ausbleibt. Alle höheren ungeradzahligen Schritte sind sichtbar. Durch die Untersuchung des Phänomens als Funktion von Mikrowellenfrequenz, Mikrowellenamplitude, Magnet- feldstärke und Probengeometrie wird argumentiert, dass die Ergebnisse der Experimente mit einem topologischen Andreev-Zustand und einer großen Zahl konventioneller Moden vereinbar sind. Um die experimentellen Ergebnisse aus Kapitel 3 nachzuvollziehen, werden in Kapitel 4 die I −V -Kennlinie eines Josephson-Kontaktes mit einer linearen Kombination eines 2π- und eines 4π-periodischen Suprastroms unter Mikrowellenstrahlung numerisch simuliert. Dies erfolgt durch ein Netzwerkmodell, welches aus einem Josephson-Kontakt in Parallelschaltung zu einem ohmschen Widerstand besteht (RSJ-Modell). Die Ergebnisse aus Kapitel 3 können nur durch das Vorhandensein eines 4π-periodischem Suprastroms I4π eindeutig numerisch simuliert werden. Darüber hinaus wird herausgestellt, dass eine Kopplung des Systems an die 4π-periodische Komponente möglich ist, obwohl der Beitrag zum Gesamtstrom Ic sehr klein ist (I4π « Ic ). Die Grundlage für die Experimente in Kapitel 5 bildet ein Josephson-Kontakt, der auf einem invertierten HgTe-Quantentrog basiert. Dieser besitzt helikale Randkanäle, welche mit Supraleitern topologisch geschützte Andreev-Zustände formen. Hierfür ist zuerst ein neuer Lithographieprozess zur Herstellung der Proben entwickelt worden. Da sich der HgTe-Quantentrog unter einer Hg0.3Cd0.7Te-Barriere befindet, muss diese für eine gute induzierte Supraleitung lokal entfernt und der Supraleiter aufgetragen werden, ohne das Vakuum zu brechen. Zur Variation der Ladungsträgerdichte im Josephson-Kontakt wird eine Feldeffektelektrode auf der Struktur platziert. Die Messung des Beugungsmusters des kritischen Stroms als Funktion des Magnetfeldes erlaubt es, die Stromverteilung in der Probe zu untersuchen. Das Beugungsmuster ähnelt dem eines supraleitenden Quanteninterferenzbauelement [engl. Superconducting Quantum Interference Device: (SQUID)] und zeigt, dass der Strom vorwiegend am Rand der Probe fließt. Durch die Bestrahlung mit Mikrowellen werden fehlende ungeradzahlige Shapiro-Plateaus bis zum Stufenindex n = 9 beobachtet. Dies verdeutlicht, dass der Strom eine 4π-periodischen Beitrag aufweist. Das Experiment wird mit einem nicht-invertierten HgTe-Quantentrog wiederholt. Dieser ist nicht in der Quanten-Spin-Hall-Phase und zeigt über den gesamten Parameterbereich alle erwarteten Shapiro-Plateaus, was beweist, dass die Topologie der Probe eine wichtige Eigenschaft ist, um die 4π-Periodizität zu beobachten. Beide Effekte, das SQUID-Beugungsmuster und die verschwindenden ungeradzahligen Shapiro- Plateaus, sind in der Nähe der Quanten-Spin-Phase am sichtbarsten und können daher als Beweis für induzierte topologische Supraleitung in spinpolarisierten Randkanälen interpretiert werden. Eine Messmethode zur direkten Bestimmung der Periodizität des Suprastromes, an- ders als die Verwendung von Shapiro-Plateaus, ist die Messung der Josephson-Emission, was in Kapitel 6 beschrieben wird. Ein topologischer Josephson-Kontakt emittiert Strah- lung bei der halben Josephsonfrequenz f J /2 aufgrund der 4π-Periodizität des Joseph- sonstromes. Hierfür wird ein neuer experimenteller Aufbau entwickelt, um das kleine Emissionssignal eines einzelnen Josephson-Kontaktes zu verstärken. Dieser neue Aufbau erlaubt es, das Spektrum eines invertierten HgTe-Quantentrog zu messen und eine Emis- sion bei f J /2 zu detektieren. Je nach Ladungsträgerdichte und Detektionfrequenz wird auch gewöhnliche Emission bei f J im Spektrum beobachtet. Generell dominiert aber bei niedriger Spannung die f J /2-Emission und bei höheren Spannungen die f J . Da Spannung und ac-Frequenz durch die zweite Josephson-Gleichung proportional zueinander lässt sich das Verhalten mit den Ergebnissen der Shapiro-Plateau-Messungen vereinbaren. Darüber hinaus ist aus der Linienbreite der Emissionssignale eine Lebensdauer für die ABS in der Größenordnung von 0.3 − 4 ns für die f J /2-Emission und 3 − 4 ns für die f J - Emission abgeschätzt worden. Ein nicht-invertierter Quantentrog zeigt im Vergleich zum invertierten nur gewöhnliche Emission bei f J über den gesamten zugänglichen Frequenz- und Ladungsträgerbereich. Im letzten Teil der Arbeit, in Kapitel 7, wird die in den 3D-topologischen Isolator HgTe induzierte Supraleitung mit Hilfe von Andreev-Punktkontaktspektroskopie unter- sucht. Hierfür wird eine HgTe-Struktur mit einer Verengung fabriziert, deren Durchmesser kleiner als die mittlere freie Weglänge der topologischen Oberflächenzustände ist und somit eine energieabhängige Spektroskopie des Zustandes erlaubt. Auf einer Seite der Verengung werden supraleitende Paarkorrelationen durch einen gewöhnlichen Supralei- ter Niob induziert. Diese Struktur ermöglicht daher die Untersuchung der Grenzfläche zwischen einem Supraleiter und einem Normalleiter (topologischer Isolator). Durch die Messung der differentiellen Leitfähigkeit d I /dV als Funktion der dc-Spannung ist es möglich die Energieabhängigkeit der Supraleitung zu untersuchen. Eine induzierte supraleitenden Bandlücke von 70 µeV wird gefunden. Die Leitfähigkeit zeigt Signatu- ren einer weiteren supraleitende Bandlücke des konventionellen Supraleiters Niob von ∆Nb ≈ 1.1 meV. Die Leitfähigkeit wird zum einen mit der Theorie von Blonder, Tinkham und Klapwijk modelliert und zum anderen mit einem erweiterten Modell, welches die 2D Oberflächenzustände des topologischen Isolators berücksichtigt simuliert. Für die Grenzfläche topologischer Isolator mit topologischem Supraleiter wird eine hohe Trans- missionswahrscheinlichkeit (niedrige Barriere) festgestellt, während an der Grenzfläche zwischen dem konventionellen Supraleiter und dem topologischen Isolator eine hohe Barriere in Übereinstimmung mit dem Modell war. Der Transportmechanismus wird durch eine Unterdrückung der induzierten Supraleitung durch eine Nichtgleichgewichts- verteilung der Zustände als Funktion der Spannung erklärt. Die vorliegende Dissertation konnte klare Signaturen von induzierter topologischer Supraleitung in Josephson-Kontakten auf Basis von HgTe-Quantentrögen und Volumen- material aufzeigen. Sie kann auch als Ausgangspunkt für eine große Anzahl von weiter- führenden Experimenten dienen. Die hier entwickelte Technik und auch Theorie kann auf andere topologische Zustände in Verbindung mit Supraleitern angewandt werden. Ein weiteres Experiment für HgTe-Strukturen ließe sich beispielsweise mit Hilfe von su- praleitenden Resonatoren die Spektroskopie und Manipulation der mikroskopischen topologischen Andreev-Zustände durchführen. Diese Technik wurde schon erfolgreich von Janvier et al . auf mechanisch kontrollierten supraleitenden Bruchkontakten ange- wandt [Science 2015, 349, 1199-1202 (2015)]. Eine alternative Technik zur Spektroskopie der Andreev Zustände benötigt konventionelle Josephson-Kontakte in Kombination mit topologischen Kontakten. Die konventionellen Kontakte erlauben die Kontrolle der supra- leitenden Phase und dienen als Spektrometer. Die Andreev-Punktkontaktspektroskopie kann auf zweidimensionale topologische Isolatoren erweitert werden. Auch kann ei- ne supraleitende Schleife, welche die Kontrolle über die Phase und eine veränderbare Barriere ermöglicht, neue Einblicke in die Transportmechanismen geben. Solche Un- tersuchungen bieten Ansatzpunkte für die Lokalisierung von Majorana-Zuständen in Quanten-Spin-Hall-Systemen. KW - Quecksilbertellurid KW - Supraleitung KW - Topologischer Isolator KW - topological insulators KW - Majorana bound state KW - topological superconductor KW - HgTe KW - Josephson junction Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162782 ER - TY - THES A1 - Ponce Garcia, Irene Paola T1 - Strategies for optimizing dynamic MRI T1 - Strategien zur Optimierung der dynamischen MR Bildgebung N2 - In Magnetic Resonance Imaging (MRI), acquisition of dynamic data may be highly complex due to rapid changes occurred in the object to be imaged. For clinical diagnostic, dynamic MR images require both high spatial and temporal resolution. The speed in the acquisition is a crucial factor to capture optimally dynamics of the objects to obtain accurate diagnosis. In the 90’s, partially parallel MRI (pMRI) has been introduced to shorten scan times reducing the amount of acquired data. These approaches use multi-receiver coil arrays to acquire independently and simultaneously the data. Reduction in the amount of acquired data results in images with aliasing artifacts. Dedicated methods as such Sensitivity Encoding (SENSE) and Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) were the basis of a series of algorithms in pMRI. Nevertheless, pMRI methods require extra spatial or temporal information in order to optimally reconstruct the data. This information is typically obtained by an extra scan or embedded in the accelerated acquisition applying a variable density acquisition scheme. In this work, we were able to reduce or totally eliminate the acquisition of the training data for kt-SENSE and kt-PCA algorithms obtaining accurate reconstructions with high temporal fidelity. For dynamic data acquired in an interleaved fashion, the temporal average of accelerated data can generate an artifact-free image used to estimate the coil sensitivity maps avoiding the need of extra acquisitions. However, this temporal average contains errors from aliased components, which may lead to signal nulls along the spectra of reconstructions when methods like kt-SENSE are applied. The use of a GRAPPA filter applied to the temporal average reduces these errors and subsequently may reduce the null components in the reconstructed data. In this thesis the effect of using temporal averages from radial data was investigated. Non-periodic artifacts performed by undersampling radial data allow a more accurate estimation of the true temporal average and thereby avoiding undesirable temporal filtering in the reconstructed images. kt-SENSE exploits not only spatial coil sensitivity variations but also makes use of spatio-temporal correlations in order to separate the aliased signals. Spatio-temporal correlations in kt-SENSE are learnt using a training data set, which consists of several central k-space lines acquired in a separate scan. The scan of these extra lines results in longer acquisition times even for low resolution images. It was demonstrate that limited spatial resolution of training data set may lead to temporal filtering effects (or temporal blurring) in the reconstructed data. In this thesis, the auto-calibration for kt-SENSE was proposed and its feasibility was tested in order to completely eliminate the acquisition of training data. The application of a prior TSENSE reconstruction produces the training data set for the kt-SENSE algorithm. These training data have full spatial resolution. Furthermore, it was demonstrated that the proposed auto-calibrating method reduces significantly temporal filtering in the reconstructed images compared to conventional kt-SENSE reconstructions employing low resolution training images. However, the performance of auto-calibrating kt-SENSE is affected by the Signal-to-Noise Ratio (SNR) of the first pass reconstructions that propagates to the final reconstructions. Another dedicated method used in dynamic MRI applications is kt-PCA, that was first proposed for the reconstruction of MR cardiac data. In this thesis, kt-PCA was employed for the generation of spatially resolved M0, T1 and T2 maps from a single accelerated IRTrueFISP or IR-Snapshot FLASH measurement. In contrast to cardiac dynamic data, MR relaxometry experiments exhibit signal at all temporal frequencies, which makes their reconstruction more challenging. However, since relaxometry measurements can be represented by only few parameters, the use of few principal components (PC) in the kt-PCA algorithm can significantly simplify the reconstruction. Furthermore, it was found that due to high redundancy in relaxometry data, PCA can efficiently extract the required information from just a single line of training data. It has been demonstrated in this thesis that auto-calibrating kt-SENSE is able to obtain high temporal fidelity dynamic cardiac reconstructions from moderate accelerated data avoiding the extra acquisition of training data. Additionally, kt-PCA has been proved to be a suitable method for the reconstruction of highly accelerated MR relaxometry data. Furthermore, a single central training line is necessary to obtain accurate reconstructions. Both reconstruction methods are promising for the optimization of training data acquisition and seem to be feasible for several clinical applications. N2 - Dynamische Bildgebung mithilfe der Magnetresonanztomographie stellt eine besondere Herausforderung dar. Für klinische Anwendungen benötigt man Bilder mit hoher räumlicher und bei schnellen Bewegungen auch zeitlicher Auflösung. Technologische Fortschritte in den letzten Jahrzehnten konnten MRT-Experimente erheblich beschleunigen. Ein wichtiger Beitrag lieferte die parallele Bildgebung (pMRT), die durch die Entwicklung von Spulenarrays für den Empfang des MR-Signals ermöglicht wurde. In paralleler Bildgebung wird nur ein Teil der eigentlich benötigten Daten aufgenommen. Diese Unterabtastung des k-Raum führt zu Bildern mit Aliasing-Artefakten. Verschiedenste Algorithmen wurden entwickelt, um mittels der zusätzlichen räumlichen Informationen der Spulenarrays anschließend Bilder zu rekonstruieren. Heute spielen Sensitivity Encoding (SENSE) und Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) eine große und bilden eine Grundlage für eine Vielzahl anderer Algorithmen. Einen Großteil aller pMRT Methoden erfordern für optimale Ergebnisse zusätzliche räumliche oder zeitliche Informationen zur Kalibrierung. Diese Kalibrations- oder Trainingsdaten werden in der Regel durch einen zusätzlichen Scan erzeugt oder in die beschleunigte Messung eingebettet aufgenommen. Das ist eine unerwünschte Verlängerung der Messzeit die Folge. In dieser Arbeit konnten wir kt-SENSE und kt-PCA Rekonstruktionen dynamischer MRT Daten mit hoher zeitlicher Genauigkeit erzielen bei gleichzeitiger Reduktion bzw. sogar Beseitigung der benötigten Menge an Trainingsdaten. Um die in beiden Methoden benötigten Spulensensitivitäten zu berechnen, kann bei bestimmten Abtastschemata mit dem Mittelwert der dynamischen Daten ein weitgehend Artefakt-freies Bild erzeugt werden. Dieser zeitliche Mittelwert enthält jedoch kleine Fehler, die durch die Anwendung von Methoden wie kt-SENSE zu Signalauslöschungen im Spektrum der rekonstruierten Daten führen können. Es konnte gezeigt werden, dass die Anwendung eines GRAPPA Filter auf den zeitlichen Mittelwert die Fehler in den Spulensensitivitäten reduziert und die Rekonstruktion von Daten aller Frequenzen ermöglicht. Eine weitere aufgezeigte Möglichkeit ist die Verwendung einer radialen Akquisition, die dank der inkohärenten Aliasing-Artefakte ebenfalls zu einer erheblich genaueren Abschätzung des zeitlichen Mittelwerts führt. Dies verhindert zeitliche Ungenauigkeiten in den rekonstruierten Bildern. Zusätzliche zu Spulensensitivitäten verwenden Rekonstruktionsmethoden wie kt-SENSE Vorkenntnisse über räumlich-zeitliche Korrelationen, um Artefakte zu entfernen. Informationen darüber werden gewöhnlich aus voll aufgenommenen Trainingsdaten mit geringer Auflösung extrahiert. Die separate Akquisitions dieser Trainingsdaten verursacht eine unerwünschte Verlängerung der Messzeit. In dieser Arbeit wurde gezeigt, dass die niedrige Auflösung der Trainingsdaten zu zeitlichen Filterungseffekten in den rekonstruierten Daten führen kann. Um dies zu verhindern und um die zusätzliche Aufnahme von Trainingsdaten zu vermeiden, wurde eine Autokalibrierung für kt-SENSE vorgeschlagen und untersucht. Hierbei werden die benötigten Trainingsdaten in einem ersten Schritt durch eine TSENSE Rekonstruktion aus den unterabgetasteten Daten selbst erzeugt. Dank der vollen Auflösung dieser Trainingsdaten kann das Auftreten eines zeitlichen Filters verhindert werden. Die Leistung der Auto-kalibration wird lediglich durch einen Einfluss des SNRs der TSENSE Trainingsdaten auf die finalen Rekonstruktionen beeinträchtigt. Ein weiteres Verfahren für die dynamische MRT ist kt-PCA, das zunächst für die Rekonstruktion von MR-Herzdaten vorgeschlagen wurde. In dieser Arbeit wurde kt-PCA für die neurologische MR Relaxometrie verwendet. Hierbei konnten aus beschleunigten IRTrueFISP und IR-Snapshot-FLASH Messungen genaue M0, T1 und T2 Karten gewonnen werden. Im Gegensatz zur Herzbildgebung weisen MR Relaxometrie Datensätze Signal auf alles zeitlichen Frequenzen auf, was ihre Rekonstruktion mit konventionellen Methoden erschwert. Andererseits können die zeitlichen Signalverläufe mit einigen wenigen Parametern dargestellt werden und die Rekonstruktion mittels kt-PCA vereinfacht sich erheblich aufgrund der geringen Anzahl benötigter Hauptkomponenten (PC). Weiter wurde gezeigt, dass aufgrund der hohen Redundanz ein Trainingsdatensatz bestehend aus einer einzigen Zeile ausreicht, um alle relevanten Informationen zu erhalten. In dieser Thesis wurde demonstriert, dass mit dem Ansatz einer auto-kalibrierten kt-SENSE Rekonstruktion Bilder mit hoher zeitlicher Genauigkeit aus beschleunigten Datensätzen des Herzens gewonnen werden können. Dies vermeidet die gewöhnlich benötigte zusätzliche Aufnahme von Trainingsdaten. Weiterhin hat sich kt-PCA als geeignetes Verfahren zur Rekonstruktion hochbeschleunigter MR Relaxometrie Datensätze erwiesen. In diesem Fall war ein Trainingsdatensatz bestehend aus einer einzelnen Zeile ausreichend für Ergebnisse mit hoher Genauigkeit. KW - Kernspintomografie KW - Dynamische Messung KW - Magnetic resonance KW - Magnetische Resonanz KW - Dynamic magnetic resonance imaging KW - Dynamische MR Bildgebung KW - DNMR-Spektroskopie KW - Bildgebendes Verfahren Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162622 ER - TY - THES A1 - Aulbach, Julian T1 - Gold-Induced Atomic Wires on Terraced Silicon Surfaces: Formation and Interactions of Silicon Spin Chains T1 - Goldinduzierte Nanodrähte auf gestuften Silizium Oberflächen: Ausbildung und Wechselwirkung von Siliziumspinketten N2 - Atomic nanowires formed by self-assembled growth on semiconducting surfaces represent a feasible physical realization of quasi-1D electron systems and can be used to study fascinating 1D quantum phenomena. The system in the focus of this thesis, Si(553)-Au, is generated by Au adsorption onto a stepped silicon surface. It features two different chain types, interspersed with each other: A Au chain on the terrace, and a honeycomb chain of graphitic silicon located at the step edge. The silicon atoms at the exposed edges of the latter are predicted to be spin-polarized and charge-ordered [1], leading to an ordered array of local magnetic moments referred to as ``spin chains''. The present thesis puts this spin chain proposal to an experimental test. A detailed scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) scrutiny reveals a distinct unoccupied density of states (DOS) feature localized at every third Si step-edge atom, which aligns perfectly with the density functional theory (DFT) prediction. This finding provides strong evidence for the formation of spin chains at the Si(553)-Au step edges, and simultaneously rules out the interpretation of previous studies which attributed the x3 step-edge superstructure to a Peierls instability. To study the formation of spin chains in further detail, an additional member of the so-called Si(hhk)-Au family -- Si(775)-Au -- is analyzed. Based on DFT modeling (performed by S.C. Erwin, Naval Research Laboratory, USA) and detailed STM and STS experiments, a new structure model for this surface is developed, and the absence of spin chains at the Si(775)-Au step edges is demonstrated. The different step-edge charge distributions of all known Si(hhk)-Au surfaces are traced back to an electron transfer between the terrace and the step edge. Accordingly, an unintentional structure defect should create a localized spin at the Si(775)-Au step edge. This prediction is verified experimentally, and suggest that surface chemistry can be used to create and destroy Si spin chains. Having clarified why spin chains form on some Si(hhk)-Au surfaces but not on others, various interaction effects of the Si(553)-Au spin chains are inspected. A collaborative analysis by SPA-LEED (M. Horn-von Hoegen group, University of Duisburg-Essen, Germany), DFT (S.C. Erwin), and STM reveals strong lateral coupling between adjacent spin chains, bearing interesting implications for their magnetic ordering. The centered geometry uncovered leads to magnetic frustration, and may stabilize a 2D quantum spin liquid. Moreover, a complex interplay between neighboring Au and Si chains is detected. Specifically, the interaction is found effectively ``one-way'', i.e., the Si step edges respond to the Au chains but not vice versa. This unidirectional effect breaks the parity of the Si chains, and creates two different configurations of step edges with opposite directionality. In addition to the static properties of the Si(553)-Au surface mentioned above, the occurrence of solitons in both wire types is witnessed in real space by means of high-resolution STM imaging. The solitons are found to interact with one another such that both move in a coupled fashion along the chains. Likewise, STM experiments as a function of the tunneling current suggest an excitation of solitons along the step edge by the STM tunneling tip. Solitons are also found to play an essential role in the temperature-dependent behavior of the Si(553)-Au step edges. It is an accepted fact that the distinct x3 superstructure of the Si(553)-Au step edges vanishes upon heating to room temperature. As a first step in exploring this transition in detail over a large temperature range, a previously undetected, occupied electronic state associated with the localized step-edge spins is identified by means of angle-resolved photoemission spectroscopy (ARPES). A tracking of this state as a function of temperature reveals an order-disorder-type transition. Complementary STM experiments attribute the origin of this transition to local, thermally activated spin site hops, which correspond to soliton-anitsoliton pairs. Finally, a manipulation of the Si(553)-Au atomic wire array is achieved by the stepwise adsorption of potassium atoms. This does not only increase the filling of the Au-induced surface bands culminating in a metal-insulator transition (MIT), but also modifies the Si step-edge charge distribution, as indicated by STM and ARPES experiments. [1] S. C. Erwin and F. Himpsel, Intrinsic magnetism at silicon surfaces, Nat. Commun. 1, 58 (2010). N2 - Durch Selbstorganisation erzeugte atomare Nanodrähte auf Halbleiteroberflächen erlauben die experimentelle Realisierung quasi-eindimensionaler Elektronensysteme und ermöglichen so die Untersuchung faszinierender eindimensionaler Quantenphänomene. Das Nanodrahtsystem im Zentrum dieser Arbeit [Si(553)-Au] lässt sich durch Adsorption von Goldatomen auf eine gestufte Siliziumoberfläche herstellen. Es besteht aus zwei unterschiedlichen, alternierend angeordneten Kettenarten. Auf jeder Terrasse befindet sich eine Goldkette, während die Stufenkanten aus einer graphitartigen Honigwabenstruktur aus Silizium aufgebaut sind. Für die Stufenkantenatome der Siliziumhonigwabenkette wurde eine Ladungsordnung mit vollständiger Spin-Polarisation jedes dritten Stufenkantenatoms vorhergesagt [1]. Dies entspricht einer regelmäßigen Anordnung von lokalen magnetischen Momenten, die als ``Spinketten'' bezeichnet werden. Die vorliegende Arbeit unterzieht diese theoretische Voraussage einem experimentellen Test. Mittels Rastertunnelmikroskopie (engl. scanning tunneling microscopy, STM) und Rastertunnelspektroskopie (engl. scanning tunneling spectroscopy, STS) wurde die lokale Zu-standsdichte entlang der Stufenkante charakterisiert. Die experimentellen Befunde zeigen eine nahezu perfekte Übereinstimmung mit dem theoretisch vorhergesagten Spinketten-Szenario. Gleichzeitig konnte eine bis dato in der Literatur überwiegend favorisierte Peierls-Instabilität ausgeschlossen werden. Um die Ausbildung von Spinketten auf goldinduzierten gestuften Siliziumoberflächen genau-er zu verstehen, wurde ein weiteres Probensystem der sogenannten Si(hhk)-Au-Familie -- Si(775)-Au -- detailliert untersucht. Basierend auf Dichte-Funktional-Theorie Rechnungen (durchgeführt von S.C. Erwin, Naval Research Laboratory, USA) und STM/STS-Experimen-ten wurde ein neues Strukturmodell für diese Oberfläche entwickelt. Außerdem konnte die Abwesenheit von Spinketten an den Si(775)-Au-Stufenkanten nachgewiesen werden. Als Ursache für die variierende Ladungsanhäufung an den Stufenkanten der Si(hhk)-Au-Systeme konnte ein Ladungsaustausch zwischen der Terrasse und der Stufenkante ausgemacht werden. Weiter wurde gezeigt, dass ein struktureller Defekt einen lokalisierten Spin an der Si(775)-Au-Stufenkante erzeugen kann. Dies untermauert das Bild des Ladungstransfers zwischen Terrasse und Stufenkante und legt außerdem nahe, Siliziumspinketten mit Hilfe von Oberflächenchemie zu modifizieren. Neben der Etablierung des Spinketten-Szenarios wurden verschiedene Wechselwirkungseffekte der Si(553)-Au-Spinkette mit ihrer Umgebung untersucht. In Zusammenarbeit mit der Gruppen um Prof. M. Horn-von Hoegen (Universität Duisburg-Essen) und S.C. Erwin konnte eine starke laterale Kopplung zwischen benachbarten Spinketten festgestellt werden, welche interessante Konsequenzen für die magnetische Ordnung der lokalisierten Spins mit sich bringt. Die entdeckte zentrierte Dreiecksanordnung der Spins führt zu magnetischer Frustration und suggeriert die Ausbildung einer zweidimensionalen Spin-Flüssigkeit. Des Weiteren konnte ein unerwartetes Wechselspiel zwischen benachbarten Gold- und Siliziumketten festgestellt werden. Es zeigte sich, dass die Goldketten auf die Siliziumketten einwirken, jedoch nicht umgekehrt. Diese lediglich in einer Richtung wirkende Beeinflussung erzeugt einen Symmetriebruch entlang der Siliziumstufenkante, der dazu führt, dass zwei Arten von Stufenkanten mit unterschiedlicher Direktionalität auftreten. Darüber hinaus konnte mit Hilfe hochaufgelöster STM-Aufnahmen die Existenz von Solitonen in beiden Kettenarten nachgewiesen werden. Dabei stellte sich heraus, dass die beiden Soliton-Typen miteinander wechselwirken und sich daher wider Erwarten nicht unabhängig sondern aneinander gekoppelt durch die Kettenstrukturen bewegen. Weiterhin suggerieren tunnelstromabhängige STM-Messungen, dass sich Solitonen in der Siliziumkette mit der Tunnelspitze des Rastertunnelmikroskops anregen lassen. Solitonen konnte außerdem eine wichtige Rolle im temperaturabhängigen Verhalten der Siliziumstufenkanten zugeschrieben werden. Es war bereits seit Längerem bekannt, dass die ausgeprägte x3 Überstruktur, die sich bei tiefen Temperaturen entlang der Stufenkante beobachten lässt, bei Raumtemperatur verschwindet. Um diese Temperaturabhängigkeit genauer zu untersuchen, wurde ein neu entdeckter, elektronischer Zustand, der sich den an der Stufenkanten lokalisierten Spins zuordnen lässt, mittels winkelaufgelöster Photoelektronenspektroskopie temperaturabhängig analysiert. Dabei stellte sich heraus, dass es sich bei dem Phasenübergang um einen speziellen Ordnungs-Unordnungs-Übergang handelt. Mit Hilfe komplementärer STM-Messungen konnte ein thermisch aktivierter Platzwechsel der lokalisierten Elektronenspins (d.h. die Erzeugung von Soliton-Antisoliton-Paaren) für das temperaturabhängige Verhalten der Siliziumstufenkante verantwortlich gemacht werden. Weiterhin konnte eine gezielte Manipulation des Si(553)-Au-Nanodrahtsystems durch sukzessive Dotierung mit Kaliumatomen realisiert werden. Dabei wurde ein Anstieg der Befüllung der goldinduzierten Oberflächenbänder, der letztendlich zu einem Metall-Isolator-Übergang führt, beobachtet. Außerdem deuten die experimentellen Befunde auf eine Modifizierung der Spinketten entlang der Stufenkante hin. [1] S. C. Erwin and F. Himpsel, Intrinsic magnetism at silicon surfaces, Nat. Commun. 1, 58 (2010). KW - Rastertunnelmikroskopie KW - Spinkette KW - ARPES KW - Tunnelspektroskopie KW - Quasi-1D Elektronensysteme KW - Atomketten Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169347 ER - TY - THES A1 - Razinskas, Gary T1 - Functional plasmonic nanocircuitry T1 - Funktionelle plasmonische Nanoschaltkreise N2 - In this work, functional plasmonic nanocircuitry is examined as a key of revolutionizing state-of-the-art electronic and photonic circuitry in terms of integration density and transmission bandwidth. In this context, numerical simulations enable the design of dedicated devices, which allow fundamental control of photon flow at the nanometer scale via single or multiple plasmonic eigenmodes. The deterministic synthesis and in situ analysis of these eigenmodes is demonstrated and constitutes an indispensable requirement for the practical use of any device. By exploiting the existence of multiple eigenmodes and coherence - both not accessible in classical electronics - a nanoscale directional coupler for the ultrafast spatial and spatiotemporal coherent control of plasmon propagation is conceived. Future widespread application of plasmonic nanocircuitry in quantum technologies is boosted by the promising demonstrations of spin-optical and quantum plasmonic nanocircuitry. N2 - In dieser Arbeit werden funktionelle plasmonische Schaltkreise als Schlüssel zur Revolutionierung modernster elektronischer und photonischer Schaltkreise in Bezug auf deren Integrationsdichte und Übertragungsbandbreite untersucht. Mit Hilfe numerischer Simulationen werden Bauelemente speziell für die Steuerung des Photonenflusses im Nanometerbereich mittels einzelner bzw. mehrerer plasmonischer Eigenmoden konzipiert. Die deterministische Synthese und Analyse solcher Eigenmoden wird aufgezeigt und stellt eine unverzichtbare Voraussetzung für die praktische Anwendung eines jeden Nanoschaltkreises dar. Durch die Existenz mehrerer Eigenmoden und Kohärenz - beide in der klassischen Elektronik nicht zugänglich - lässt sich ein nanoskaliger Richtkoppler für die ultraschnelle räumliche und räumlich-zeitliche kohärente Kontrolle der Plasmonenausbreitung entwerfen. Künftig werden plasmonische Schaltkreise aufgrund der vielversprechenden Demonstrationen von spinoptischen und quantenplasmonischen Schaltkreisen in Quantentechnologien weite Verbreitung finden. KW - Nanooptik KW - Plasmon KW - Ultrakurzer Lichtpuls KW - Nanostruktur KW - Wellenleiter KW - Integrated circuit KW - Ultrafast information processing KW - Surface plasmon KW - Mode propagation KW - Coherent control KW - Integriert-optisches Bauelement KW - Ultraschnelle Informationsverarbeitung KW - Oberflächenplasmon KW - Modenpropagation KW - Kohärente Kontrolle Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166917 ER - TY - THES A1 - Grauer, Stefan T1 - Transport Phenomena in Bi\(_2\)Se\(_3\) and Related Compounds T1 - Transport Phänomene in Bi\(_2\)Se\(_3\) und verwandten Materialien N2 - One of the most significant technological advances in history was driven by the utilization of a new material class: semiconductors. Its most important application being the transistor, which is indispensable in our everyday life. The technological advance in the semiconductor industry, however, is about to slow down. Making transistors ever smaller to increase the performance and trying to reduce and deal with the dissipative heat will soon reach the limits dictated by quantum mechanics with Moore himself, predicting the death of his famous law in the next decade. A possible successor for semiconductor transistors is the recently discovered material class of topological insulators. A material which in its bulk is insulating but has topological protected metallic surface states or edge states at its boundary. Their electrical transport characteristics include forbidden backscattering and spin-momentum-locking with the spin of the electron being perpendicular to its momentum. Topological insulators therefore offer an opportunity for high performance devices with low dissipation, and applications in spintronic where data is stored and processed at the same point. The topological insulator Bi\(_2\)Se\(_3\) and related compounds offer relatively high energy band gaps and a rather simple band structure with a single dirac cone at the gamma point of the Brillouin zone. These characteritics make them ideal candidates to study the topological surface state in electrical transport experiments and explore its physics. N2 - Einer der wichtigsten technologischen Fortschritte der Geschichte wurde von der Nutzung einer neuen Materialklasse getrieben: Halbleitern. Ihre wichtigste Anwendung ist der Transistor, welcher unverzichtbar für unseren Alltag geworden ist. Allerdings ist der technologische Fortschritt in der Halbleiterindustrie dabei sich zu verlangsamen. Versuche die Transistoren immer kleiner zu machen und die Abwärme zu regulieren und zu reduzieren werden bald ihr, durch die Quantenmechanik vorgeschriebenes, Ende erreichen. Moore selbst hat schon das Ende seines berühmten Gesetzes für das nächste Jahrzehnt vorhergesagt. Ein möglicher Nachfolger für Halbleitertransistoren ist die kürzlich entdeckte Materialklasse der topologischen Isolatoren. Ein Material, dass in seinem Volumen isolierend ist, aber an seinen Grenzen durch die Topologie geschützte metallische Oberflächenzustände oder Randkanäle hat. Deren elektrischen Transporteigenschaften umfassen unterdrückte Rückstreuung und Spin-Impuls-Kopplung, wobei der Spin des Elektrons senkrecht zu seinem Impuls ist. Topologische Isolatoren bieten daher die Möglichkeit für hochleistungsfähige Bauteile mit niedrigem Widerstand und für Anwendungen in der Spintronik, in der Daten an der gleichen Stelle gespeichert und prozessiert werden. Der topologische Isolator Bi\(_2\)Se\(_3\) und verwandte Materialien weisen eine relativ hohe Energielücke und eine eher einfache Bandstruktur mit einem einzigen Dirac-Kegel am Gammapunkt der Brilloiun Zone auf. Diese Eigenschaften machen sie zu idealen Kandidaten um den topologischen Oberflächenzustand in elektrischen Transportexperimenten zu untersuchen und seine neue Physik zu entdecken. KW - Topologischer Isolator KW - Bismutselenide KW - Transportprozess KW - QAHE KW - Bi2Se3 KW - Magnetic Topological Insulator KW - Quanten-Hall-Effekt KW - Axion KW - Oberflächenzustand Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157666 SN - 978-3-8439-3481-7 PB - Verlag Dr. Hut GmbH ER - TY - THES A1 - Munz, Eberhard T1 - Physiological and metabolical high-resolution MRI of plants T1 - Physiologische und metabolische hochaufgelöste Pflanzen-Magnetresonanzbildgebung N2 - The noninvasive magnetic resonance imaging technique allows for the investigation of functional processes in the living plant. For this purpose during this work, different NMR imaging methods were further developed and applied. For the localisation of the intrusion of water into the germinating rape seed with the simultaneous depiction of the lipid-rich tissue via a 3D rendering, in Chap. 5 the technique of interleaved chemical selective acquisition of water and lipid was used in the germinating seed. The utilization of high-resolution MR images of germinated seeds enabled the localization of a predetermined water gap in the lipid-rich aleurone layer, which resides directly under the seed coat. The for a long time in biology prevalent discussion, whether such a gap exists or the seed soaks up the water from all sides, rather like a sponge, could hereby, at least for the rapeseed seed, be answered clearly. Furthermore, the segmentation and 3D visualization of the vascular tissue in the rapeseed seeds was enabled by the high-resolution datasets, a multiply branched structure preconstructed in the seed could be shown. The water is directed by the vascular tissue and thus awakens the seed gradually to life. This re-awakening could as well be tracked by means of invasive imaging via an oxygen sensor. In the re-awakened seeds, the lipid degradation starts, other than expected, not in the lipid-rich cotyledons but in the residual endosperm remaining from seed development and in the aleurone layer which previously protected the embryo. Within this layer, the degradation could be verified in the high-resolution MR datasets. The method presented in Chap. 6 provides a further characteristic trait for phenotyping of seeds and lipid containing plants in general. The visualization of the compounds of fatty acids in plant seeds and fruits could be achieved by the distinct utilization of chemical shift-selective imaging techniques. Via the application of a CSI sequence the fatty acid compounds in an olive were localized in a 2D slice. In conjunction with an individually adjusted CHESS presaturation module Haa85 the high-resolution 3D visualization of saturated and unsaturated fatty acid compounds in different seeds was achieved. The ratio maps calculated from these datasets allow to draw conclusions from the developmental stage or the type of seed. Furthermore, it could be shown that the storage condition of two soybean seeds with different storage time durations lead to no degradation of the fatty acid content. Additional structural information from inside of dry seeds are now accessible via MRI. In this work the imaging of cereal seeds could be significantly improved by the application of the UTE sequence. The hitherto existing depictions of the lipid distribution, acquired with the spin echo sequence, were always sufficient for examinations of the lipid content, yet defects in the starchy endosperm or differences in the starch concentration within the seed remained constantly unseen with this technique. In a direct comparison of the datasets acquired with the previous imaging technique (spin echo) and with UTE imaging, the advantage of data acquisition with UTE could be shown. By investigating the potential seed compounds (starch, proteins, sugar) in pure form, the constituent parts contributing to the signal could be identified as bound water (residual moisture) and starch. The application of a bi-exponential fit on the datasets of the barley seed enabled the separate mapping of magnetization and of relaxation time of two components contributing to the NMR signal. The direct comparison with histological stainings verified the previous results, thus this technique can be used for the selective imaging of starch in dry seeds. Conclusions on the translocation characteristics in plants can be drawn by the technique proposed in Chap. 8. The associated translocation velocities can now, even in the range of several um/h, be determined in the living plant. Based on calculated concentrations of an MR contrast agent, which was taken up by the plant, these translocation velocities were estimated both in longitudinal direction, thus along the vascular bundle, and in horizontal direction, thus out of the bundle. The latter velocity is located below the contrast agent's velocity value of free diffusion. By adjusting a dynamic contrast-enhancing imaging technique (DCE-Imaging, Tof91) the acquisition duration of a T1-map was significantly reduced. By means of these maps, local concentrations of the contrast agent in plant stems and the siliques of the rapeseed plant could be determined. Numerous questions in plant science can only be answered by non-invasive techniques such as MRI. For this reason, besides the experimental results achieved in this work, further NMR methods were tested and provided for the investigation of plants. As an example, the study on the imaging of magnetic exchange processes are mentioned, which provided the groundwork for a possible transfer of CEST experiments (Chemical Exchange Saturation Transfer) to the plant. The results are presented in the bachelor thesis of A. Jäger Jae17, which was performed under my supervision, they find great interest under biologists. The development of new technologies, which extend the possibilities for the investigation of living organisms, is of great importance. For this reason, I have contributed to the development of the currently unpublished method RACETE (Refocused Acquisition of Chemical Exchange Transferred Excitations [Jak17, Reu17, Gut18a]). By rephasing the transferred magnetization the utilization of properties which have not been available in chemical "`exchange"' experiments is enabled. With this method a positive contrast is generated, thus a reference experiment is not mandatory. Furthermore, the image phase, which in classical experiments contains no information about the exchanged protons, can be used for the distinct identification of multiple substances which have been excited simultaneously. This recently at the Department of Experimental Physics V developed method can be used in particular for the identification of lipids and for the localization of sugars and amino acids, thus it can serve the enhancement and improvement of non-invasive analytical methods. N2 - Die nicht-invasive Bildgebungstechnik der Magnetresonanz ermöglicht es, funktionelle Prozesse in Pflanzen am lebenden Objekt zu untersuchen. Hierfür wurden im Rahmen dieser Arbeit verschiedene NMR-Bildgebungsmethoden weiterentwickelt und angewendet. Da Pflanzen ein magnetisch sehr inhomogenes Gewebe besitzen, bedingt durch Lufteinschlüsse und das Vorhandensein verschiedenster gelöster Stoffe im Pflanzengewebe, wurden daher hauptsächlich Spin-Echo-Methoden für die Bildgebung verwendet. Um das erste Eindringen des Wassers in den keimenden Raps-Samen bei gleichzeitiger Darstellung des lipid-reichen Gewebes mittels einer 3D-Visualisierung zu lokalisieren, wurde in Kapitel 5 die Technik der verschachtelten, chemisch selektiven Aufnahme von Wasser und Lipid im keimenden Samen verwendet. Durch Verwendung von hochausgelösten MR-Aufnahmen an gekeimten Samen konnte weiterhin in der lipid-reichen Aleuron-Schicht, die sich direkt unter der Samenschale befindet, ein gezielt angelegter Einlass für das Wasser verortet werden. Die in der Biologie lange Zeit verbreitete Diskussion, ob es einen solchen Einlass gibt oder der keimende Samen das Wasser eher wie ein Schwamm von allen Seiten aufsaugt, konnte hierdurch, zumindest für den Raps-Samen, eindeutig beantwortet werden. Weiterhin konnte durch die hoch-aufgelösten Aufnahmen das vaskuläre Gewebe in den Raps-Samen segmentiert und in 3D veranschaulicht werden, es zeigte sich eine mehrfach verzweigte Struktur, die bereits im Samen angelegt ist. Das Wasser folgt hierbei dem vaskulären Gewebe und erweckt hierdurch den Samen schrittweise zum Leben. Dieses Wieder-Erwachen konnte ebenfalls durch die invasive Bildgebung mittels eines Sauerstoff-Sensors nachverfolgt werden. Im nun erwachten Samen selbst beginnt der Lipid-Abbau, anders als zunächst angenommen, nicht in den lipid-haltigen Kotyledonen sondern im von der Samen-Entwicklung verbliebenden Endosperm und in der den Keimling vormals schützenden Aleuron-Schicht. In dieser konnte der Abbau an gekeimten Samen durch hochaufgelöste MR-Aufnahmen nachgewiesen werden. Die in Kapitel 6 vorgeschlagene Methode liefert ein weiteres Merkmal zur Phenotypisiserung von Samen und lipidhaltigen Pflanzenbestandteilen im Allgemeinen. Die Darstellung der Bestandteile ungesättigter Fettsäuren in Pflanzensamen und -Früchten konnte durch gezielte Verwendung von chemisch selektiven Bildgebungstechniken erreicht werden. Durch die Anwendung einer CSI-Sequenz konnten die Fettsäurebestandteile in Oliven in einer 2D-Schicht lokalisiert werden. In Verbindung mit einem jeweils angepassten CHESS-Vorsättigungsmodul Haa85 wurde die hochaufgelöste 3D-Darstellung von gesättigten und ungesättigten Fettsäurebestandteilen in unterschiedlichen Samen erreicht. Rückschlüsse über das Entwicklungsstadium sowie die Sorte der verwendeten Samen können aus den Verhältnis-Karten, die aus den jeweiligen Datensätzen berechnet wurden, gezogen werden. Dass in diesem Fall die Aufbewahrungsmethode zu keiner Degradation der Fettsäurezusammensetzung geführt hat, konnte weiterhin am Beispiel von zwei Sojasamen mit unterschiedlicher Lagerdauer gezeigt werden. Zusätzliche strukturelle Informationen aus dem Inneren trockener Samen sind nun mittels MRT zugänglich. In dieser Arbeit konnte durch die UTE-Sequenz die Bildgebung von Getreidesamen deutlich vorangebracht werden. Die bisherigen Darstellungen der Lipid-Verteilung, aufgenommen mit einer Spin-Echo Sequenz, waren zwar für die Betrachtung des Lipid-Gehalts stets ausreichend, Defekte im stärkehaltigen Endosperm oder Unterschiede in der Stärke-Konzentration innerhalb des Samen blieben mit dieser Technik jedoch stets verborgen. Im direkten Vergleich der mit der bisherigen Technik (Spin-Echo) und der UTE-Bildgebung aufgenommenen Datensätze konnte der Vorteil der Datenaufnahme mit UTE gezeigt werden. Durch die Untersuchung der möglichen Samenbestandteile (Stärke, Proteine, Zucker) in Reinform konnten die zum Signal beitragen Bestandteile als gebundenes Wasser (Restfeuchte) und Stärke identifiziert werden. Die Verwendung bi-exponentiellen Fits and die Messdaten ermöglichte es im Gersten-Samen, zwei zum Signal beitragende Komponenten in getrennten Karten bezüglich ihrer Magnetisierung und Relaxationszeit zu trennen. Der Vergleich mit histologischen Färbungen bestätigte die bisherigen Ergebnisse, somit kann diese Technik zur selektiven Darstellung von Stärke in trockenen Samen verwendet werden. Rückschlüsse auf das Transportverhalten in Pflanzen können durch die in Kapitel 8 vorgestellte Technik gezogen werden. Die zugehörigen Transportgeschwindigkeiten im lebenden Pflanzenobjekt können nun, selbst im Bereich von wenigen $\mu$m/h, bestimmt werden. Diese wurden anhand von berechneten Konzentrationen eines von der Pflanze aufgenommenen MR-Kontrastmittels sowohl in longitudinaler Richtung, also entlang des Leitgewebebündels, als auch in horizontaler Richtung, also aus dem Leitbündel heraus, abgeschätzt werden; Letztere Geschwindigkeit liegt deutlich unter dem Wert der freien Diffusionsgeschwindigkeit des Kontrastmittels. Hierfür wurden durch Anpassung einer dynamischen Kontrast-erhöhenden Bildgebungstechnik (DCE-Imaging, Tof91) die Aufnahmedauer einer für die weiteren Berechnungen benötigen T1-Karte deutlich reduziert. Mittels dieser Karten konnten die lokalen Konzentrationen des Kontrastmittels in Pflanzenstängeln und Schoten der Rapspflanze bestimmt werden. Zahlreiche Fragen in der Pflanzenforschung können nur durch nicht-invasive Techniken wie MRT beantwortet werden. Deswegen wurden, neben den experimentellen Ergebnissen, die mittels dieser Arbeit erreicht wurden, auch weitere NMR Methoden für die Untersuchung von Pflanzen getestet und zur Verfügung gestellt. Als Beispiel seien hier die Untersuchungen zur Bildgebung von magnetischen Austauschprozessen genannt, welche eine Vorarbeit zur möglichen Übertragung con CEST-Experimenten (Chemical Exchange Saturation Transfer) auf das Modell Pflanze liefern. Die Ergebnisse sind in der Bachelor-Arbeit von A. Jäger \cite{jaeger17}, an deren Durchführung ich als Betreuer maßgeblich beteiligt war, dargestellt und finden großes Interesse bei Biologen. Von besonderer Wichtigkeit sind auch die Entwicklungen neuer Technologien, die die Möglichkeiten zur Untersuchung von lebenden Organismen erweitern können. Deswegen habe ich zu der Entwicklung der bislang unveröffentlichten Methode RACETE (Refocused Acquisition of Chemical Exchange Transferred Excitations [Jak17, Reu17, Gut18a]) beigetragen. Durch das Rephasieren der transferierten Magnetisierung können Eigenschaften, die bislang in chemischen "`Austausch"'-Experimenten nicht zur Verfügung stehen, ausgenutzt werden. Mit dieser Methode wird ein positiver Kontrast erzeugt, sie ist deshalb nicht zwingend auf ein Referenz-Experiment angewiesen. Weiterhin kann die Bildphase, welche in klassichen CEST-Experimenten keine Information über die ausgetauschten Protonen enthält, zur eindeutigen Identifizierung mehrerer parallel angeregter Substanzen verwendet werden. KW - Kernspintomografie KW - Pflanzen KW - Pflanzenbildgebung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172518 ER - TY - THES A1 - Sidiropoulou, Ourania T1 - Characterization of the ATLAS-type Micromegas Detectors T1 - Charakterisierung von Micromegas-Detektoren des ATLAS-Typs N2 - Micromegas are parallel-plate gaseous detectors with micro-pattern readout structures that are able to measure precisely and efficiently at high particle rates. Their difference with respect to other gaseous detectors is that the space in which particles ionise the gas and create electrons is separated from the region in which these electrons are multiplied (or amplified) by a thin metallic mesh. In the ionisation region, typically a few mm thick, a moderate field of a few hundred V/cm is applied. The amplification region with a homogeneous electrical field of 40--50~kV/cm is only 100--150~$\upmu$m thick. The latter guarantees that the positive ions produced in the amplification process are rapidly evacuated and the possibility to build up space charge at high rate is reduced. Critical in micromegas detectors are sparks in the thin amplification region in the presence of the high electrical field. This problem was solved in 2011 by introducing a spark protection scheme. It consists of a layer of resistive strips on top of the readout strips, separated from the latter by a thin insulation layer. Micromegas with the spark protection scheme were selected as instrumentation of the first ATLAS forward muon station (NSW) in the upgrade of the ATLAS detector for the operation of the Large Hadron Collider (LHC) at high luminosity (HL-LHC), expected for 2026. The main subjects of this thesis are: the characterisation of the first micromegas quadruplet prototypes for the NSW detectors; the characterisation of the materials used in the spark-protection system; and the study of the influence of the mesh distance holders (pillars) on the detector performance. The thesis starts with a brief introduction into the LHC and ATLAS projects, followed by a chapter that explains the reason for the upgrade of the ATLAS muon system and shows the layout of the NSW. The first of the three main chapters covers the construction and the characterisation of the first two prototypes for the NSW detectors. These detectors comprise four detection layers and have the same mechanical structure as the NSW detectors. The mechanical precision as well as the homogeneity of the detector response are discussed. The latter has been measured using X-rays and cosmic rays. The spatial resolution that can be achieved with these detectors precision has been measured at the MAMI accelerator at Mainz with low-energy electrons. The chapter is completed by a section that describes the successful integration of a data acquisition system (DAQ) into the official ATLAS DAQ system that was required for an initially planned installation of one of the prototypes on the existing Small Wheel. The next chapter presents a study of the influence of temperature and humidity changes on the resistive strips used in the spark protection system. In addition the long-term stability of the resistive material has been measured accumulating charge equivalent to 100 years of operation in the HL-LHC and exposing the samples to intense gamma irradiation equivalent to 10 years of HL-LHC operation. The third part covers the impact of the mesh distance holders (pillars) on the performance of the detector. This study has been performed with a 10 x 10 cm$^2$ bulk-micromegas with two different pillar shapes. Both 5.9 keV gammas from a $^{55}$Fe and 8 keV X-rays from a Cu target were used. In this context also the electrostatic charge-up of the detector is discussed. In the Appendices one finds a summary of the fundamental physics relevant for gaseous detectors as well as some supporting material for the topics covered in the main part of the thesis. N2 - Micromegas-Detektoren sind Gas-Detektoren aus der Familie der Parallel-Platten-Detektoren mit sehr feinen Auslese-Elementen, die präzise und effizient bei hohen Teilchenraten messen können. Sie unterscheiden sich von anderen Gas-Detektoren dadurch, dass der Bereich, in dem die zu messenden Teilchen das Gas ionisieren und damit Elektronen produzieren, von dem Bereich, in dem diese Elektronen vervielfältigt werden, durch ein feines metallisches Gitter getrennt ist. Im Ionisationsbereich der gewöhnlich mehrere mm dick ist, wird ein moderates elektrisches Feld von einigen hundert Volt angelegt. Der Vervielfachungs- oder Verstärkungsbereich mit einem homogenen elektrischen Feld von $\sim$40--50 kV/cm ist nur 100--150 $\upmu$m dick. Dadurch können die positiven Ionen, die im Vervielfältigungsprozess entstehen, schnell abgeleitet werden und der Aufbau von Raumladung bei hohen Teilchenraten wird begrenzt. Ein kritisches Element der Micromegas Detektoren sind spontane Entladungen in dem starken elektrischen Feld und dem sehr dünnen Verstärkungsbereich. Diese Problem wurde 2011 durch die Einführung einer Schutzschicht gelöst. Diese besteht aus einer dünnen Isolationsschicht über den Auslesestreifen, auf die Widerstandsstreifen aufgebracht werden. Micromegas-Detektoren mit Widerstandsschutz wurden für die Instrumentierung der ersten Station des ATLAS Myon-Systems in Vorwärtsrichtung (NSW) als Mess- und Auslöse-Instrumente für den Betrieb des Large Hadron Colliders (LHC) bei höherer Luminosität (HL-LHC, ab 2020) gewählt. Das Ziel dieser Arbeit ist: 1. die Messung der Eigenschaften der ersten Micromegas NSW Prototypen; 2. die Untersuchung der Eigenschaften des Materials, das für die Widerstandsstreifen benutzt wird; und 3. die Bestimmung des Einflusses der Gitter-Abstandshalter (pillars) auf die Eigenschaften des Detektors. Die Arbeit beginnt mit einer kurzen Einführung, die den LHC und das ATLAS Projekt vorstellt, gefolgt von einem Kapitel, das erklärt, warum die jetzt installierten Myon-Detektoren ersetzt werden müssen, um bei einer konsequenten Erhöhung der LHC-Luminosität nicht an Messgenauigkeit zu verlieren. Es zeigt dann wie die neue Myon Station, das New Small Wheel (NSW), aussehen wird. Im ersten der Hauptkapitel werden der Bau und die Untersuchung der ersten beiden Prototypen für die NSW Detektoren beschrieben. Diese Detektoren (MMSW) bestehen aus vier Messlagen und haben die gleiche mechanische Struktur wie die NSW Detektoren. Sowohl die mechanische Präzision als auch die Homogenität der Signale über den gesamten Detektor und die Teilchen-Nachweiswahrscheinlichkeit werden diskutiert. Letztere wurden mit Röntgenstrahlen und Teilchen aus der kosmischen Strahlung gemessen. Die Ortsauflösung wurde am MAMI Beschleuniger in Mainz mit nieder energetischen Elektronen gemessen. Das Kapitel wird komplettiert durch einen Abschnitt, der die erfolgreiche Integration eines Datenerfassungssystems für die MMSW Detektoren in das offizielle ATLAS Datenerfassungssystem beschreibt. Solch ein System wurde für die ursprünglich geplante Installation eines der MMSW Detektoren in ATLAS gebraucht. Danach wird die Untersuchung der Eigenschaften der Widerstandsstreifen präsentiert, insbesondere deren Abhängigkeit von Temperatur und relativer Luftfeuchtigkeit, sowie ihr Langzeitverhalten. Dafür wurden die Streifen einem Stromfluss ausgesetzt der 100 Jahren Betrieb im LHC entspricht, zum anderen einer Gamma Strahlendosis ausgesetzt, wie sie bei einem 10-jährigen LHC Betrieb erwartet wird. Im dritten Teil folgt eine ausführliche Studie des Einflusses der Gitter-Abstands-halter (pillars) auf die Ortsauflösung und die Nachweiswahrscheinlichkeit. Diese Studie wurde mit einem 10 $\times$ 10 cm$^2$ großen Micromegas Detektor mit zwei verschiedenen Abstandshalterformen sowohl mit 5.9 keV Gamma-Strahlen von einer $^{55}$Fe Quelle, als auch mit 8 keV Photonen aus einer Röntgen-Quelle durchgeführt. In diesem Zusammenhang wird auch die elektrostatische Aufladung des Detektors diskutiert. Im Anhang findet sich eine Zusammenfassung der physikalischen Grundlagen, die für Gasdetektoren relevant sind, sowie zusätzliches Material zu den oben beschriebenen Kapiteln. KW - micromegas detectors KW - ATLAS New Small Wheels (NSW) KW - resistive micromegas KW - micro pattern gaseous detectors KW - muon spectrometer KW - ATLAS KW - Gasionisationsdetektor Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167323 ER - TY - JOUR T1 - Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at root s=13 TeV JF - Journal of High Energy Physics N2 - A search is conducted for a beyond-the-Standard-Model boson using events where a Higgs boson with mass 125 GeV decays to four leptons (l = e or mu). This decay is presumed to occur via an intermediate state which contains one or two on-shell, promptly decaying bosons: H -> ZX/XX -> 4l , where X is a new vector boson Z(d) or pseudoscalar a with mass between 1 and 60 GeV. The search uses pp collision data collected with the ATLAS detector at the LHC with an integrated luminosity of 36.1 fb(-1) at a centre-of-mass energy root s = 13TeV. No significant excess of events above Standard Model background predictions is observed; therefore, upper limits at 95% confidence level are set on model-independent fiducial cross-sections, and on the Higgs boson decay branching ratios to vector and pseudoscalar bosons in two benchmark models. KW - Beyond Standard Model KW - Hadron-Hadron scattering (experiments) KW - Patron Distributions KW - Energies Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220721 VL - 166 IS - 6 ER - TY - JOUR T1 - Search for diboson resonances with boson-tagged jets in \({pp}\) collisions at root S=13 TeV with the ATLAS detector JF - Physics Letters B N2 - Narrow resonances decaying into WW, WZ or ZZ boson pairs are searched for in 36.7 fb(-1) of proton-proton collision data at a centre-of-mass energy of root s = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and 2016. The diboson system is reconstructed using pairs of large-radius jets with high transverse momentum and tagged as compatible with the hadronic decay of high-momentum Wor Zbosons, using jet mass and substructure properties. The search is sensitive to diboson resonances with masses in the range 1.2-5.0 TeV. No significant excess is observed in any signal region. Exclusion limits are set at the 95% confidence level on the production cross section times branching ratio to dibosons for a range of theories beyond the Standard Model. Model-dependent lower limits on the mass of new gauge bosons are set, with the highest limit set at 3.5 TeV in the context of mass-degenerate resonances that couple predominantly to bosons. (c) 2017 The Author(s). Published by Elsevier B.V. KW - Leptons KW - Physics KW - WZ Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225782 VL - 777 ER - TY - JOUR T1 - Measurement of the production cross-section of a single top quark in association with a \(Z\) boson in proton-proton collisions at 13 TeV with the ATLAS detector JF - Physics letters B N2 - The production of a top quark in association with a Z boson is investigated. The proton-proton collision data collected by the ATLAS experiment at the LHC in 2015 and 2016 at a centre-of-mass energy of root s = 13 TeV are used, corresponding to an integrated luminosity of 36.1 fb(-1). Events containing three identified leptons (electrons and/or muons) and two jets, one of which is identified as a b-quark jet are selected. The major backgrounds are diboson, tt($)over-bar and Z + jets production. A neural network is used to improve the background rejection and extract the signal. The resulting significance is 4.2 sigma in the data and the expected significance is 5.4 sigma. The measured cross-section for tZq production is 600 +/- 170(stat.)+/- 140(syst.)fb. (C) 2018 The Author(s). Published by Elsevier B.V. KW - ATLAS experiment KW - proton-proton collisions KW - single top quark Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225406 VL - 780 ER -