TY - JOUR A1 - Grüne, Jeannine A1 - Londi, Giacomo A1 - Gillett, Alexander J. A1 - Stähly, Basil A1 - Lulei, Sebastian A1 - Kotova, Maria A1 - Olivier, Yoann A1 - Dyakonov, Vladimir A1 - Sperlich, Andreas T1 - Triplet Excitons and Associated Efficiency‐Limiting Pathways in Organic Solar Cell Blends Based on (Non‐) Halogenated PBDB‐T and Y‐Series JF - Advanced Functional Materials N2 - The great progress in organic photovoltaics (OPV) over the past few years has been largely achieved by the development of non‐fullerene acceptors (NFAs), with power conversion efficiencies now approaching 20%. To further improve device performance, loss mechanisms must be identified and minimized. Triplet states are known to adversely affect device performance, since they can form energetically trapped excitons on low‐lying states that are responsible for non‐radiative losses or even device degradation. Halogenation of OPV materials has long been employed to tailor energy levels and to enhance open circuit voltage. Yet, the influence on recombination to triplet excitons has been largely unexplored. Using the complementary spin‐sensitive methods of photoluminescence detected magnetic resonance and transient electron paramagnetic resonance corroborated by transient absorption and quantum‐chemical calculations, exciton pathways in OPV blends are unravelled employing the polymer donors PBDB‐T, PM6, and PM7 together with NFAs Y6 and Y7. All blends reveal triplet excitons on the NFA populated via non‐geminate hole back transfer and, in blends with halogenated donors, also by spin‐orbit coupling driven intersystem crossing. Identifying these triplet formation pathways in all tested solar cell absorber films highlights the untapped potential for improved charge generation to further increase plateauing OPV efficiencies. KW - halogenation KW - non‐fullerene acceptors KW - organic photovoltaics KW - spin physics KW - triplet excitons Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312164 VL - 33 IS - 12 ER - TY - JOUR A1 - Gottscholl, Andreas A1 - Wagenhöfer, Maximilian A1 - Klimmer, Manuel A1 - Scherbel, Selina A1 - Kasper, Christian A1 - Baianov, Valentin A1 - Astakhov, Georgy V. A1 - Dyakonov, Vladimir A1 - Sperlich, Andreas T1 - Superradiance of spin defects in silicon carbide for maser applications JF - Frontiers in Photonics N2 - Masers as telecommunication amplifiers have been known for decades, yet their application is strongly limited due to extreme operating conditions requiring vacuum techniques and cryogenic temperatures. Recently, a new generation of masers has been invented based on optically pumped spin states in pentacene and diamond. In this study, we pave the way for masers based on spin S = 3/2 silicon vacancy (V\(_{Si}\)) defects in silicon carbide (SiC) to overcome the microwave generation threshold and discuss the advantages of this highly developed spin hosting material. To achieve population inversion, we optically pump the V\(_{Si}\) into their m\(_S\) = ±1/2 spin sub-states and additionally tune the Zeeman energy splitting by applying an external magnetic field. In this way, the prerequisites for stimulated emission by means of resonant microwaves in the 10 GHz range are fulfilled. On the way to realising a maser, we were able to systematically solve a series of subtasks that improved the underlying relevant physical parameters of the SiC samples. Among others, we investigated the pump efficiency as a function of the optical excitation wavelength and the angle between the magnetic field and the defect symmetry axis in order to boost the population inversion factor, a key figure of merit for the targeted microwave oscillator. Furthermore, we developed a high-Q sapphire microwave resonator (Q ≈ 10\(^4\)–10\(^5\)) with which we find superradiant stimulated microwave emission. In summary, SiC with optimized spin defect density and thus spin relaxation rates is well on its way of becoming a suitable maser gain material with wide-ranging applications. KW - stimulated emission KW - maser KW - population inversion KW - silicon vacancy KW - spin polarization KW - superradiance Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284698 SN - 2673-6853 VL - 3 ER - TY - JOUR A1 - Sperlich, Andreas A1 - Auth, Michael A1 - Dyakonov, Vladimir T1 - Charge transfer in ternary solar cells employing two fullerene derivatives: where do electrons go? BT - Dedicated to Prof. Sariciftci on the occasion of his 60th birthday JF - Israel Journal of Chemistry N2 - Earlier reports demonstrated that ternary organic solar cells (OSC) made of donor polymers (D) blended with different mixtures of fullerene acceptors (A : A) performed very similarly. This finding is surprising, as the corresponding fullerene LUMO levels are slightly different, which might result in decisive differences in the charge transfer step. We investigate ternary OSC (D : A : A) made of the donor polymer P3HT with stoichiometric mixtures of different fullerene derivatives, PC\(_{60}\)BM : PC\(_{70}\)BM and PC\(_{70}\)BM : IC\(_{60}\)BA, respectively. Using quantitative electron paramagnetic resonance (EPR) we can distinguish between positive and negative polarons, localized on the specific molecules. We found that after the initial charge transfer step, the electrons are re-distributed over two nearby acceptors in agreement with their stoichiometry and their relative LUMO energy difference. Remarkably, the measured ΔLUMO differences in fullerene mixtures are reduced by an order of magnitude compared to that of the pristine materials, i. e., below 1 meV for PC\(_{60}\)BM : PC\(_{70}\)BM and (20±5) meV for PC\(_{70}\)BM : IC\(_{60}\)BA. Furthermore, we found that this reduced ΔLUMO explains the shift in open circuit voltage for D : A : A organic solar cells. We attribute these findings to hybridization, leading to an effective fullerene LUMO. Consequently, multi-acceptor blends are indeed a viable option for photodetectors and solar cells, as they combine the best electron acceptor and light absorbing properties. KW - ternary organic solar cells Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257506 VL - 62 IS - 7-8 ER - TY - JOUR A1 - Weissenseel, Sebastian A1 - Gottscholl, Andreas A1 - Bönnighausen, Rebecca A1 - Dyakonov, Vladimir A1 - Sperlich, Andreas T1 - Long-lived spin-polarized intermolecular exciplex states in thermally activated delayed fluorescence-based organic light-emitting diodes JF - Science Advances N2 - Spin-spin interactions in organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) are pivotal because radiative recombination is largely determined by triplet-to-singlet conversion, also called reverse intersystem crossing (RISC). To explore the underlying process, we apply a spin-resonance spectral hole-burning technique to probe electroluminescence. We find that the triplet exciplex states in OLEDs are highly spin-polarized and show that these states can be decoupled from the heterogeneous nuclear environment as a source of spin dephasing and can even be coherently manipulated on a spin-spin relaxation time scale T-2* of 30 ns. Crucially, we obtain the characteristic triplet exciplex spin-lattice relaxation time T-1 in the range of 50 mu s, which far exceeds the RISC time. We conclude that slow spin relaxation rather than RISC is an efficiency-limiting step for intermolecular donor:acceptor systems. Finding TADF emitters with faster spin relaxation will benefit this type of TADF OLEDs. KW - detected magnetic-resonance KW - population oscillations KW - polaron delocalization KW - charge separation KW - hole KW - phosphorescence KW - singlet KW - absorption KW - tryptophan KW - emission Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265508 VL - 7 IS - 47 ER - TY - JOUR A1 - Bunzmann, Nikolai A1 - Krugmann, Benjamin A1 - Weissenseel, Sebastian A1 - Kudriashova, Liudmila A1 - Ivaniuk, Khrystyna A1 - Stakhira, Pavlo A1 - Cherpak, Vladyslav A1 - Chapran, Marian A1 - Grybauskaite‐Kaminskiene, Gintare A1 - Grazulevicius, Juozas Vidas A1 - Dyakonov, Vladimir A1 - Sperlich, Andreas T1 - Spin‐ and Voltage‐Dependent Emission from Intra‐ and Intermolecular TADF OLEDs JF - Advanced Electronic Materials N2 - Organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) utilize molecular systems with a small energy splitting between singlet and triplet states. This can either be realized in intramolecular charge transfer states of molecules with near‐orthogonal donor and acceptor moieties or in intermolecular exciplex states formed between a suitable combination of individual donor and acceptor materials. Here, 4,4′‐(9H,9′H‐[3,3′‐bicarbazole]‐9,9′‐diyl)bis(3‐(trifluoromethyl) benzonitrile) (pCNBCzoCF\(_{3}\)) is investigated, which shows intramolecular TADF but can also form exciplex states in combination with 4,4′,4′′‐tris[phenyl(m‐tolyl)amino]triphenylamine (m‐MTDATA). Orange emitting exciplex‐based OLEDs additionally generate a sky‐blue emission from the intramolecular emitter with an intensity that can be voltage‐controlled. Electroluminescence detected magnetic resonance (ELDMR) is applied to study the thermally activated spin‐dependent triplet to singlet up‐conversion in operating devices. Thereby, intermediate excited states involved in OLED operation can be investigated and the corresponding activation energy for both, intra‐ and intermolecular based TADF can be derived. Furthermore, a lower estimate is given for the extent of the triplet wavefunction to be ≥ 1.2 nm. Photoluminescence detected magnetic resonance (PLDMR) reveals the population of molecular triplets in optically excited thin films. Overall, the findings allow to draw a comprehensive picture of the spin‐dependent emission from intra‐ and intermolecular TADF OLEDs. KW - color tuning KW - exciplexes KW - organic light emitting diodes KW - spin KW - triplets Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224434 VL - 7 IS - 3 ER - TY - JOUR A1 - Gottscholl, Andreas A1 - Diez, Matthias A1 - Soltamov, Victor A1 - Kasper, Christian A1 - Krauße, Dominik A1 - Sperlich, Andreas A1 - Kianinia, Mehran A1 - Bradac, Carlo A1 - Aharonovich, Igor A1 - Dyakonov, Vladimir T1 - Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors JF - Nature Communications N2 - Spin defects in solid-state materials are strong candidate systems for quantum information technology and sensing applications. Here we explore in details the recently discovered negatively charged boron vacancies (V\(_B\)\(^−\)) in hexagonal boron nitride (hBN) and demonstrate their use as atomic scale sensors for temperature, magnetic fields and externally applied pressure. These applications are possible due to the high-spin triplet ground state and bright spin-dependent photoluminescence of the V\(_B\)\(^−\). Specifically, we find that the frequency shift in optically detected magnetic resonance measurements is not only sensitive to static magnetic fields, but also to temperature and pressure changes which we relate to crystal lattice parameters. We show that spin-rich hBN films are potentially applicable as intrinsic sensors in heterostructures made of functionalized 2D materials. KW - electronic properties and materials KW - qubits Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261581 VL - 12 IS - 1 ER - TY - INPR A1 - Stennett, Tom E. A1 - Bissinger, Philipp A1 - Griesbeck, Stefanie A1 - Ullrich, Stefan A1 - Krummenacher, Ivo A1 - Auth, Michael A1 - Sperlich, Andreas A1 - Stolte, Matthias A1 - Radacki, Krzysztof A1 - Yao, Chang-Jiang A1 - Würthner, Frank A1 - Steffen, Andreas A1 - Marder, Todd B. A1 - Braunschweig, Holger T1 - Near-Infrared Quadrupolar Chromophores Combining Three-Coordinate Boron-Based Superdonor and Superacceptor Units T2 - Angewandte Chemie, International Edition N2 - In this work, two new quadrupolar A-π-D-π-A chromophores have been prepared featuring a strongly electron- donating diborene core and strongly electron-accepting dimesitylboryl F(BMes2) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (BMes2) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry and UV-vis-NIR absorption and emission spectroscopy indicated that the compounds possess extended conjugated π-systems spanning their B4C8 cores. The combination of exceptionally potent π-donor (diborene) and π- acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm, respectively, and very high extinction coefficients of ca. 120,000 M-1cm-1. Both molecules also display weak near-IR fluorescence with small Stokes shifts. KW - boron KW - near-IR chromophores KW - conjugation KW - low-valent compounds KW - synthesis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180391 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, P. Bissinger, S. Griesbeck, S. Ullrich, I. Krummenacher, M. Auth, A. Sperlich, M. Stolte, K. Radacki, C.-J. Yao, F. Wuerthner, A. Steffen, T. B. Marder, H. Braunschweig, Angew. Chem. Int. Ed. 2019, 58, 6449. , which has been published in final form at https://doi.org/10.1002/anie.201900889. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - JOUR A1 - Kraus, Hannes A1 - Heiber, Michael C. A1 - Väth, Stefan A1 - Kern, Julia A1 - Deibel, Carsten A1 - Sperlich, Andreas A1 - Dyakonov, Vladimir T1 - Analysis of Triplet Exciton Loss Pathways in PTB7:PC\(_{71}\)BM Bulk Heterojunction Solar Cells JF - Scientific Reports N2 - A strategy for increasing the conversion efficiency of organic photovoltaics has been to increase the VOC by tuning the energy levels of donor and acceptor components. However, this opens up a new loss pathway from an interfacial charge transfer state to a triplet exciton (TE) state called electron back transfer (EBT), which is detrimental to device performance. To test this hypothesis, we study triplet formation in the high performing PTB7:PC\(_{71}\)BM blend system and determine the impact of the morphology-optimizing additive 1,8-diiodoctane (DIO). Using photoluminescence and spin-sensitive optically detected magnetic resonance (ODMR) measurements at low temperature, we find that TEs form on PC\(_{71}\)BM via intersystem crossing from singlet excitons and on PTB7 via EBT mechanism. For DIO blends with smaller fullerene domains, an increased density of PTB7 TEs is observed. The EBT process is found to be significant only at very low temperature. At 300 K, no triplets are detected via ODMR, and electrically detected magnetic resonance on optimized solar cells indicates that TEs are only present on the fullerenes. We conclude that in PTB7:PC\(_{71}\)BM devices, TE formation via EBT is impacted by fullerene domain size at low temperature, but at room temperature, EBT does not represent a dominant loss pathway. KW - solar cells KW - electronic properties and materials Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147413 VL - 6 IS - 29158 ER - TY - JOUR A1 - Astakhov, Georgy V. A1 - Kraus, Hannes A1 - Soltamov, V. A. A1 - Fuchs, Franziska A1 - Simin, Dimitrij A1 - Sperlich, Andreas A1 - Baranov, P. G. A1 - Dyakonov, Vladimir T1 - Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide N2 - Quantum systems can provide outstanding performance in various sensing applications, ranging from bioscience to nanotechnology. Atomic-scale defects in silicon carbide are very attractive in this respect because of the technological advantages of this material and favorable optical and radio frequency spectral ranges to control these defects. We identified several, separately addressable spin-3/2 centers in the same silicon carbide crystal, which are immune to nonaxial strain fluctuations. Some of them are characterized by nearly temperature independent axial crystal fields, making these centers very attractive for vector magnetometry. Contrarily, the zero-field splitting of another center exhibits a giant thermal shift of −1.1 MHz/K at room temperature, which can be used for thermometry applications. We also discuss a synchronized composite clock exploiting spin centers with different thermal response. KW - condensed-matter physics KW - quantum physics Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113025 ER - TY - THES A1 - Sperlich, Andreas T1 - Electron Paramagnetic Resonance Spectroscopy of Conjugated Polymers and Fullerenes for Organic Photovoltaics T1 - Elektron-Paramagnetische Resonanz-Spektroskopie von konjugierten Polymeren und Fullerenen für die organische Photovoltaik N2 - In the presented thesis, the various excited states encountered in conjugated organic semiconductors are investigated with respect to their utilization in organic thin-film solar cells. Most of these states are spin-baring and can therefore be addressed by means of magnetic resonance spectroscopy. The primary singlet excitation (spin 0), as well as positive and negative polaronic charge carriers (spin 1/2) are discussed. Additionally, triplet excitons (spin 1) and charge transfer complexes are examined, focussing on their differing spin-spin interaction strength. For the investigation of these spin-baring states especially methods of electron paramagnetic resonance (EPR) are best suited. Therefore according experimental methods were implemented in the course of this work to study conjugated polymers, fullerenes and their blends with continuous wave as well as time-resolved EPR and optically detected magnetic resonance. N2 - Die vorliegende Arbeit beschäftigt sich mit den vielfältigen Anregungszuständen in konjugierten organischen Halbleitern mit Hinblick auf deren Verwendung in organischen Dünnschicht-Solarzellen. Diese verschiedenen Zustände sind zumeist Spin-behaftet und daher mit Methoden der Magnetresonanz adressierbar. Es wird unterschieden zwischen Singulett-Exzitonen (Spin 0) als primärer Photoanregung, sowie positiven und negativen polaronischen Ladungsträgern (Spin 1/2). Des Weiteren werden Triplet-Exzitonen (Spin 1) und Ladungstransferkomplexe behandelt, die sich durch unterschiedlich starke Spin-Spin Wechselwirkung auszeichnen. Zur Untersuchung dieser Spin-behafteten Zustände bieten sich insbesondere Methoden der Elektron-Paramagnetischen Resonanz-Spektroskopie (EPR) an. Im Zuge dieser Arbeit wurden dafür entsprechede Messmethoden der Dauerstrich (cw) EPR, zeitaufgelösten, transienten EPR und der optisch detektierten Magnetresonanz (ODMR) implementiert und zur Erforschung von konjugierten Polymeren, Fullerenen und deren Mischungen eingesetzt. KW - Organische Solarzelle KW - Fotovoltaik KW - Organischer Halbleiter KW - organische Photovoltaik KW - organische Halbleiter KW - organic photovoltaic KW - organic solar cells KW - Elektronenspinresonanz KW - Fullerene KW - Konjugierte Polymere KW - Photovoltaik KW - Spektroskopie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-81244 ER -