TY - JOUR A1 - Pütz, Stephanie M. A1 - Kram, Jette A1 - Rauh, Elisa A1 - Kaiser, Sophie A1 - Toews, Romy A1 - Lueningschroer-Wang, Yi A1 - Rieger, Dirk A1 - Raabe, Thomas T1 - Loss of p21-activated kinase Mbt/PAK4 causes Parkinson-like symptoms in Drosophila JF - Disease Models & Mechanisms N2 - Parkinson's disease (PD) provokes bradykinesia, resting tremor, rigidity and postural instability, and also non-motor symptoms such as depression, anxiety, sleep and cognitive impairments. Similar phenotypes can be induced in Drosophila melanogaster through modification of PD-relevant genes or the administration of PD inducing toxins. Recent studies correlated deregulation of human p21-activated kinase 4 (PAK4) with PD, leaving open the question of a causative relationship of mutations in this gene for manifestation of PD symptoms. To determine whether flies lacking the PAK4 homolog Mushroom bodies tiny (Mbt) show PD-like phenotypes, we tested for a variety of PD criteria. Here, we demonstrate that mbt mutant flies show PD-like phenotypes including age-dependent movement deficits, reduced life expectancy and fragmented sleep. They also react to a stressful situation with higher immobility, indicating an influence of Mbt on emotional behavior. Loss of Mbt function has a negative effect on the number of dopaminergic protocerebral anterior medial (PAM) neurons, most likely caused by a proliferation defect of neural progenitors. The age-dependent movement deficits are not accompanied by a corresponding further loss of PAM neurons. Previous studies highlighted the importance of a small PAM subgroup for age-dependent PD motor impairments. We show that impaired motor skills are caused by a lack of Mbt in this PAM subgroup. In addition, a broader re-expression of Mbt in PAM neurons improves life expectancy. Conversely, selective Mbt knockout in the same cells shortens lifespan. We conclude that mutations in Mbt/PAK4 can play a causative role in the development of PD phenotypes. KW - Sleep fragmentation KW - Life expectancy KW - Emotional behavior KW - Dopaminergic PAM cluster neurons KW - Drosophila KW - Parkinson's disease KW - Mbt KW - PAK4 KW - Negative geotaxis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259222 VL - 14 IS - 6 ER - TY - JOUR A1 - Mantel, Frederick A1 - Müller, Elena A1 - Kleine, Philip A1 - Zimmermann, Marcus A1 - Exner, Florian A1 - Richter, Anne A1 - Weick, Stefan A1 - Ströhle, Serge A1 - Polat, Bülent A1 - Höcht, Stefan A1 - Flentje, Michael T1 - Chemoradiotherapy by intensity-modulated radiation therapy with simultaneous integrated boost in locally advanced or oligometastatic non-small-cell lung cancer-a two center experience JF - Strahlentherapie und Onkologie N2 - Purpose Integrating moderate hypofractionation to the macroscopic tumor with elective nodal irradiation while sparing the organs at risk (OAR) in chemoradiotherapy of locally advanced non-small-cell lung cancer. Methods From 2010-2018, treatment, patient and tumor characteristics of 138 patients from two radiation therapy centers were assessed. Chemoradiotherapy by intensity-modulated radiation therapy (IMRT) with a simultaneous integrated boost (SIB) to the primary tumor and macroscopic lymph node metastases was used. Results A total of 124 (90%) patients received concurrent chemotherapy. 106 (76%) patients had UICC (Union for International Cancer Control) stage ≥IIIB and 21 (15%) patients had an oligometastatic disease (UICC stage IV). Median SIB and elective total dose was 61.6 and 50.4 Gy in 28 fractions, respectively. Furthermore, 64 patients (46%) had an additional sequential boost to the primary tumor after the SIB-IMRT main series: median 6.6 Gy in median 3 fractions. The median cumulative mean lung dose was 15.6 Gy (range 6.2-29.5 Gy). Median follow-up and radiological follow-up for all patients was 18.0 months (range 0.6-86.9) and 16.0 months (range 0.2-86.9), respectively. Actuarial local control rates at 1, 2 and 3 years were 80.4, 68.4 and 57.8%. Median overall survival and progression-free survival was 30.0 months (95% confidence interval [CI] 23.5-36.4) and 12.1 months (95% CI 8.2-16.0), respectively. Treatment-related toxicity was moderate. Radiation-induced pneumonitis grade 2 and grade 3 occurred in 13 (9.8%) and 3 (2.3%) patients. Conclusions Chemoradiotherapy using SIB-IMRT showed promising local tumor control rates and acceptable toxicity in patients with locally advanced and in part oligometastatic lung cancer. The SIB concept, resulting in a relatively low mean lung dose, was associated with low numbers of clinically relevant pneumonitis. The overall survival appears promising in the presence of a majority of patients with UICC stage ≥IIIB disease. KW - local control KW - image-guided radiation therapy KW - thoracic cancer KW - hypofractionation KW - multimodal therapy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264821 SN - 1439-099X VL - 197 IS - 5 ER - TY - JOUR A1 - Jäger, Andreas A1 - Wegener, Sonja A1 - Sauer, Otto A. T1 - Dose rate correction for a silicon diode detector array JF - Journal of Applied Clinical Medical Physics N2 - Purpose A signal dependence on dose rate was reported for the ArcCHECK array due to recombination processes within the diodes. The purpose of our work was to quantify the necessary correction and apply them to quality assurance measurements. Methods Static 10 × 10 cm\(^2\) 6-MV fields delivered by a linear accelerator were applied to the detector array while decreasing the average dose rate, that is, the pulse frequency, from 500 to 30 MU/min. An ion chamber was placed inside the ArcCHECK cavity as a reference. Furthermore, the instantaneous dose rate dependence (DRD) was studied. The position of the detector was adjusted to change the dose-per-pulse, varying the distance between the focus and the diode closest to the focus between 69.6 and 359.6 cm. Reference measurements were performed with an ion chamber placed inside a PMMA slab phantom at the same source-to-detector distances (SDDs). Exponential saturation functions were fitted to the data, with different parameters to account for two generations of ArcCHECK detectors (types 2 and 3) and both DRDs. Corrections were applied to 12 volumetric modulated arc therapy plans. Results The sensitivity decreased by up to 2.8% with a decrease in average dose rate and by 9% with a decrease in instantaneous dose rate. Correcting the average DRD, the mean gamma pass rates (2%/2-mm criterion) of the treatment plans were improved by 5 percentage points (PP) for diode type 3 and 0.4 PP for type 2. Correcting the instantaneous DRD, the improvement was 8.4 PP for type 3 and 0.9 PP for type 2. Conclusions The instantaneous DRD was identified as the prevailing effect on the diode sensitivity. We developed and validated a method to correct this behavior. The number of falsely not passed treatment plans could be considerably reduced. KW - ArcCHECK KW - correction KW - diode KW - dose rate KW - dosimetry, QA Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260446 VL - 22 IS - 10 ER - TY - JOUR A1 - Bachmann, Julia A1 - Ehlert, Elias A1 - Becker, Matthias A1 - Otto, Christoph A1 - Radeloff, Katrin A1 - Blunk, Torsten A1 - Bauer-Kreisel, Petra T1 - Ischemia-like stress conditions stimulate trophic activities of adipose-derived stromal/stem cells JF - Cells N2 - Adipose-derived stromal/stem cells (ASCs) have been shown to exert regenerative functions, which are mainly attributed to the secretion of trophic factors. Upon transplantation, ASCs are facing an ischemic environment characterized by oxygen and nutrient deprivation. However, current knowledge on the secretion capacity of ASCs under such conditions is limited. Thus, the present study focused on the secretory function of ASCs under glucose and oxygen deprivation as major components of ischemia. After exposure to glucose/oxygen deprivation, ASCs maintained distinct viability, but the metabolic activity was greatly reduced by glucose limitation. ASCs were able to secrete a broad panel of factors under glucose/oxygen deprivation as revealed by a cytokine antibody array. Quantification of selected factors by ELISA demonstrated that glucose deprivation in combination with hypoxia led to markedly higher secretion levels of the angiogenic and anti-apoptotic factors IL-6, VEGF, and stanniocalcin-1 as compared to the hypoxic condition alone. A conditioned medium of glucose/oxygen-deprived ASCs promoted the viability and tube formation of endothelial cells, and the proliferation and migration of fibroblasts. These findings indicate that ASCs are stimulated by ischemia-like stress conditions to secrete trophic factors and would be able to exert their beneficial function in an ischemic environment. KW - adipose-derived stromal/stem cells (ASCs) KW - regenerative medicine KW - secretion KW - trophic factors KW - ischemia KW - glucose starvation KW - hypoxia Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211233 SN - 2073-4409 VL - 9 IS - 9 ER - TY - JOUR A1 - Pütz, Stephanie M. T1 - Mbt/PAK4 together with SRC modulates N-Cadherin adherens junctions in the developing Drosophila eye JF - Biology Open N2 - Tissue morphogenesis is accompanied by changes of adherens junctions (AJ). During Drosophila eye development, AJ reorganization includes the formation of isolated N-Cadherin AJ between photoreceptors R3/R4. Little is known about how these N-Cadherin AJ are established and maintained. This study focuses on the kinases Mbt/PAK4 and SRC, both known to alter E-Cadherin AJ across phyla. Drosophila p21-activated kinase Mbt and the non-receptor tyrosine kinases Src64 and Src42 regulate proper N-Cadherin AJ. N-Cadherin AJ elongation depends on SRC kinase activity. Cell culture experiments demonstrate binding of both Drosophila SRC isoforms to N-Cadherin and its subsequent tyrosine phosphorylation. In contrast, Mbt stabilizes but does not bind N-Cadherin in vitro. Mbt is required in R3/R4 for zipping the N-Cadherin AJ between these cells, independent of its kinase activity and Cdc42-binding. The mbt phenotype can be reverted by mutations in Src64 and Src42. Because Mbt neither directly binds to SRC proteins nor has a reproducible influence on their kinase activity, the conclusion is that Mbt and SRC signaling converge on N-Cadherin. N-Cadherin AJ formation during eye development requires a proper balance between the promoting effects of Mbt and the inhibiting influences of SRC kinases. KW - Drosophila KW - Eye development KW - p21-activated kinase Mbt/PAK4 KW - Adherens junction Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200898 VL - 8 ER - TY - JOUR A1 - Beck, Katherina A1 - Hovhanyan, Anna A1 - Menegazzi, Pamela A1 - Helfrich-Förster, Charlotte A1 - Raabe, Thomas T1 - Drosophila RSK Influences the Pace of the Circadian Clock by Negative Regulation of Protein Kinase Shaggy Activity JF - Frontiers in Molecular Neuroscience N2 - Endogenous molecular circadian clocks drive daily rhythmic changes at the cellular, physiological, and behavioral level for adaptation to and anticipation of environmental signals. The core molecular system consists of autoregulatory feedback loops, where clock proteins inhibit their own transcription. A complex and not fully understood interplay of regulatory proteins influences activity, localization and stability of clock proteins to set the pace of the clock. This study focuses on the molecular function of Ribosomal S6 Kinase (RSK) in the Drosophila melanogaster circadian clock. Mutations in the human rsk2 gene cause Coffin–Lowry syndrome, which is associated with severe mental disabilities. Knock-out studies with Drosophila ortholog rsk uncovered functions in synaptic processes, axonal transport and adult behavior including associative learning and circadian activity. However, the molecular targets of RSK remain elusive. Our experiments provide evidence that RSK acts in the key pace maker neurons as a negative regulator of Shaggy (SGG) kinase activity, which in turn determines timely nuclear entry of the clock proteins Period and Timeless to close the negative feedback loop. Phosphorylation of serine 9 in SGG is mediated by the C-terminal kinase domain of RSK, which is in agreement with previous genetic studies of RSK in the circadian clock but argues against the prevailing view that only the N-terminal kinase domain of RSK proteins carries the effector function. Our data provide a mechanistic explanation how RSK influences the molecular clock and imply SGG S9 phosphorylation by RSK and other kinases as a convergence point for diverse cellular and external stimuli. KW - circadian clock KW - Period KW - Timeless KW - Shaggy kinase KW - RSK KW - Coffin–Lowry syndrome Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196034 SN - 1662-5099 VL - 11 IS - 122 ER - TY - JOUR A1 - Fischer, Matthias A1 - Raabe, Thomas T1 - Animal models for Coffin-Lowry syndrome: RSK2 and nervous system dysfunction JF - Frontiers in Behavioral Neuroscience N2 - Loss of function mutations in the rsk2 gene cause Coffin-Lowry syndrome (CLS), which is associated with multiple symptoms including severe mental disabilities. Despite the characterization of ribosomal S6 kinase 2 (RSK2) as a protein kinase acting as a downstream effector of the well characterized ERK MAP-kinase signaling pathway, it turns out to be a challenging task to link RSK2 to specific neuronal processes dysregulated in case of mutation. Animal models such as mouse and Drosophila combine advanced genetic manipulation tools with in vivo imaging techniques, high-resolution connectome analysis and a variety of behavioral assays, thereby allowing for an in-depth analysis for gene functions in the nervous system. Although modeling mental disability in animal systems has limitations because of the complexity of phenotypes, the influence of genetic variation and species-specific characteristics at the neural circuit and behavioral level, some common aspects of RSK2 function in the nervous system have emerged, which will be presented. Only with this knowledge our understanding of the pathophysiology of CLS can be improved, which might open the door for development of potential intervention strategies. KW - Coffin-Lowry syndrome KW - RSK2 KW - mental disorders KW - mouse model KW - Drosophila model KW - neuronal dysfunction KW - behavior Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176799 VL - 12 IS - 106 ER - TY - JOUR A1 - Cate, Marie-Sophie A1 - Gajendra, Sangeetha A1 - Alsbury, Samantha A1 - Raabe, Thomas A1 - Tear, Guy A1 - Mitchell, Kevin J. T1 - Mushroom body defect is required in parallel to Netrin for midline axon guidance in Drosophila JF - Development N2 - The outgrowth of many neurons within the central nervous system is initially directed towards or away from the cells lying at the midline. Recent genetic evidence suggests that a simple model of differential sensitivity to the conserved Netrin attractants and Slit repellents is insufficient to explain the guidance of all axons at the midline. In the Drosophila embryonic ventral nerve cord, many axons still cross the midline in the absence of the Netrin genes (NetA and NetB) or their receptor frazzled. Here we show that mutation of mushroom body defect (mud) dramatically enhances the phenotype of Netrin or frazzled mutants, resulting in many more axons failing to cross the midline, although mutations in mud alone have little effect. This suggests that mud, which encodes a microtubule-binding coiled-coil protein homologous to NuMA and LIN-5, is an essential component of a Netrin-independent pathway that acts in parallel to promote midline crossing. We demonstrate that this novel role of Mud in axon guidance is independent of its previously described role in neural precursor development. These studies identify a parallel pathway controlling midline guidance in Drosophila and highlight a novel role for Mud potentially acting downstream of Frizzled to aid axon guidance. KW - Drosophila KW - Axon guidance KW - Midline KW - Mud KW - NuMA KW - LIN-5 KW - Netrin Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189770 VL - 143 IS - 6 ER - TY - JOUR A1 - Petritsch, B. A1 - Köstler, H. A1 - Weng, A. M. A1 - Horn, M. A1 - Gassenmaier, T. A1 - Kunz, A. S. A1 - Weidemann, F. A1 - Wanner, C. A1 - Bley, T. A. A1 - Beer, M. T1 - Myocardial lipid content in Fabry disease: a combined \(^1\)H-MR spectroscopy and MR imaging study at 3 Tesla JF - BMC Cardiovascular Disorders N2 - Background Fabry disease is characterized by a progressive deposition of sphingolipids in different organ systems, whereby cardiac involvement leads to death. We hypothesize that lysosomal storage of sphingolipids in the heart as occurring in Fabry disease does not reflect in higher cardiac lipid concentrations detectable by \(^1\)H magnetic resonance spectroscopy (MRS) at 3 Tesla. Methods Myocardial lipid content was quantified in vivo by \(^1\)H-MRS in 30 patients (12 male, 18 female; 18 patients treated with enzyme replacement therapy) with genetically proven Fabry disease and in 30 healthy controls. The study protocol combined \(^1\)H-MRS with cardiac cine imaging and LGE MRI in a single examination. Results Myocardial lipid content was not significantly elevated in Fabry disease (p = 0.225). Left ventricular (LV) mass was significantly higher in patients suffering from Fabry disease compared to controls (p = 0.019). Comparison of patients without signs of myocardial fibrosis in MRI (LGE negative; n = 12) to patients with signs of fibrosis (LGE positive; n = 18) revealed similar myocardial lipid content in both groups (p > 0.05), while the latter showed a trend towards elevated LV mass (p = 0.076). Conclusions This study demonstrates the potential of lipid metabolic investigation embedded in a comprehensive examination of cardiac morphology and function in Fabry disease. There was no evidence that lysosomal storage of sphingolipids influences cardiac lipid content as measured by \(^1\)H-MRS. Finally, the authors share the opinion that a comprehensive cardiac examination including three subsections (LGE; \(^1\)H-MRS; T\(_1\) mapping), could hold the highest potential for the final assessment of early and late myocardial changes in Fabry disease. KW - late gadolinium enhancement KW - myocardial lipid content KW - magnetic resonance spectroscopy KW - Morbus Fabry KW - rare diseases KW - lysosomal storage disease Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146693 VL - 16 IS - 205 ER - TY - JOUR A1 - Varagnolo, Linda A1 - Lin, Quiong A1 - Obier, Nadine A1 - Plass, Christoph A1 - Dietl, Johannes A1 - Zenke, Martin A1 - Claus, Rainer A1 - Müller, Albrecht M. T1 - PRC2 inhibition counteracts the culture-associated loss of engraftment potential of human cord blood-derived hematopoietic stem and progenitor cells JF - Scientific Reports N2 - Cord blood hematopoietic stem cells (CB-HSCs) are an outstanding source for transplantation approaches. However, the amount of cells per donor is limited and culture expansion of CB-HSCs is accompanied by a loss of engraftment potential. In order to analyze the molecular mechanisms leading to this impaired potential we profiled global and local epigenotypes during the expansion of human CB hematopoietic stem and progenitor cells (HPSCs). Human CB-derived CD34+ cells were cultured in serum-free medium together with SCF, TPO, FGF, with or without Igfbp2 and Angptl5 (STF/STFIA cocktails). As compared to the STF cocktail, the STFIA cocktail maintains in vivo repopulation capacity of cultured CD34+ cells. Upon expansion, CD34+ cells genome-wide remodel their epigenotype and depending on the cytokine cocktail, cells show different HK4me3 and H3K27me3 levels. Expanding cells without Igfbp2 and Angptl5 leads to higher global H3K27me3 levels. ChIPseq analyses reveal a cytokine cocktail-dependent redistribution of H3K27me3 profiles. Inhibition of the PRC2 component EZH2 counteracts the culture-associated loss of NOD scid gamma (NSG) engraftment potential. Collectively, our data reveal chromatin dynamics that underlie the culture-associated loss of engraftment potential. We identify PRC2 component EZH2 as being involved in the loss of engraftment potential during the in vitro expansion of HPSCs. KW - ex vivo expansion KW - epigenomic landscapes KW - in vivo polycomb KW - transplantation states genes KW - EZH2 differentiation trichostatin Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148374 VL - 5 IS - 12319 ER -