TY - THES A1 - Heiby, Julia T1 - Insight into molecular mechanisms of folding and self-association of spider silk protein domains T1 - Einblicke in molekulare Mechanismen der Faltung und Selbstassoziation von Spinnenseidenproteindomänen N2 - Spider silk is a biomaterial of extraordinary toughness paired with elasticity. The assembly of silk proteins, so-called spidroins (from “spider” and “fibroin”), generates the silk threads we typically see in our garden or the corners of our houses. Although spider webs from different species vary considerably in geometry and size, many sections of spidroin sequences are conserved. Highly conserved regions, found in all spidroins, relate to the terminal domains of the protein, i.e., the N-terminal (NTD) and C-terminal domains (CTD). Both have an essential function in the silk fibre association and polymerisation. The NTD is a 14 kDa five-helix bundle, which self-associates via a pH-driven mechanism. This process is critical for starting the polymerisation of the fibre. However, detailed insights into how conserved this mechanism is in different species and the quantitative thermodynamic comparison between homologous NTDs was missing. For this reason, four homologous NTDs of the major ampullate gland (MaSp) from spider species Euprosthenops australis, Nephila clavipes, Latrodectus hesperus, and Latrodectus geometricus were investigated. I analysed and quantified equilibrium thermodynamics, kinetics of folding, and self-association. Methods involved dynamic light scattering (MALS), stopped-flow fluorescence and circular dichroism spectroscopy in combination with thermal and chemical denaturation experiments. The results showed conserved, cooperative two-state folding on a sub-millisecond time scale. All homologous NTDs showed a similarly fast association in the order of 10^9 M^−1 s^−1, while the resulting equilibrium dissociation constants were in the low nanomolar range. Electrostatic forces were found to be of great importance for protein association. Monomeric protein stability increased with salt concentration while enhancing its folding speed. However, due to Debye-Hückel effects, we found intermolecular electrostatics to be shielded, which reduced the NTDs association capacity significantly at high ionic strength. Altogether, the energetics and kinetics of the NTD dimerisation was conserved for all analysed homologs. Comparable to the NTD, the spider silks CTD is also a α-helix bundle, which covalently links two spidroins. The orientation of the domains predetermines the future fibre geometry. Here again, the detailed quantitative characterisation of the folding and dimerisation was missing. Therefore, the CTD from the E. australis was analysed in-depth. The protein folded via a three-state mechanism and was placed in the family of knotted proteins. By analysing the amino acid composition of the NTD of the MaSp1 of the Euprosthenops australis, we found an unusually high content of methionine residues (Met). To elucidate why this protein exhibits so many Met residues, I mutated all core Mets simultaneously to leucine (Leu). Results revealed a dramatically stabilised NTD, which now folded 50 times faster. After solving the tertiary structure of the mutant by NMR (nuclear magnetic resonance) spectroscopy, the structure of the monomeric mutant was found to be identical with the wild-type protein. However, when probing the dimerisation of the NTD, I could show that the association capacity was substantially impaired for the mutant. Our findings lead to the conclusion that Met provides the NTD with enhanced conformational dynamics and thus mobilises the protein, which results in tightly associated dimers. In additional experiments, I first re-introduced new Met residues into the Met-depleted protein at sequence positions containing native Leu. Hence, the mutated NTD protein was provided with the same number of Leu, which were previously removed by mutation. However, the protein did not regain wild-type characteristics. The functionality was not restored, but its stability was decreased as expected. To probe our hypothesis gained from the MaSp NTD, I transferred the experiment to another protein, namely the Hsp90 chaperone. Therefore, I incorporated methionine residues in the protein, which resulted in a slight improvement of its function. Finally, trial experiments were performed aiming at the synthesis of shortened spidroin constructs containing less repetitive middle-segments than the wild-type protein. The objective was to study the findings of the terminal domains in the context of an intact spidroin. The synthesis of these engineered spidroins was challenging. Nevertheless, preliminary results encourage the assumption that the characteristics observed in the isolated domains hold true in the context of a full-length spidroin. N2 - Spinnenseide ist ein Biomaterial mit außergewöhnlicher Widerstandsfähigkeit welche gepaart ist mit Elastizität. Das Zusammenfügen von Seidenproteinen aus so ge-nannten Spidroinen (ein Kunstwort aus „Spinne“ und „Fibroin“) erzeugt die Seiden-fäden, die wir typischerweise in unseren Gärten oder in den Ecken unserer Häuser finden. Obwohl Spinnennetze von verschiedenen Spinnenarten in Geometrie und Größe stark variieren, sind große Teile der Spidroin-Sequenzen konserviert. Stark konservierte Bereiche, die in allen Spidroinen vorkommen, sind die endständigen Bereiche des Proteins, die N-terminale (NTD) und C-terminale Domäne (CTD) ge-nannt werden. Beide haben wichtige Funktionen in der Assoziation der Proteine im Spinnkanal und deren Polymerisation zur Ausbildung des Seidenfadens. Die NTD ist ein kleines 14 kDa Protein, bestehend aus einem Bündel aus fünf Helices, dessen Selbstorganisation pH-abhängig ist. Dieser Prozess leitet die Poly-merisation der Faser ein. Allerdings fehlten bis heute Informationen darüber, ob dieser Mechanismus bei homologen Domänen aus verschiedenen Spinnenarten konser¬viert ist, da kaum quantitative biophysikalische Daten vorhanden sind. Aus diesem Grund wurden vier homologe NTDs der Spinnenarten Euprosthenops australis, Nephila clavipes, Latrodectus hesperus und Latrodectus geometricus vergleichend untersucht und deren Gleichgewichts-Thermodynamik, die Kinetik der Faltung und die Selbstassoziation quantitativ analysiert. Dazu wurden Methoden wie dynamische Mehrwinkel-Lichtstreuung (MALS), Stopped-Flow Fluoreszenz-spektroskopie und Zirkulardichroismus in Kombination mit thermischen und chemischen Denaturierungs¬experimenten angewandt. Die Ergebnisse lieferten die Erkenntnis einer kooperativen Zwei-Zustands-Faltung, die auf einer Zeitskala von weniger als einer Millisekunde stattfand. Alle homologen NTDs zeigten eine schnelle Assoziationsratenkonstante in der Größenordnung von 10^9 M^-1 s^-1, während die Gleichgewichts-Dissoziationskonstante für alle Homologe im nied¬rigen nano-molaren Bereich lag. Die Proteinassoziation wurde durch elektrostatische Kräfte gesteuert, wobei hohe Salzkonzentrationen die Stabilität des monomeren Proteins und dessen Faltungsgeschwindigkeit erhöhten. Die Assoziation zweier Domänen wurde jedoch durch Abschirmung intermolekularer elektrostatischer Kräfte, dem Debye-Hückel-Gesetz zufolge, reduziert. Die Energetik und Kinetik der NTD-Dimerisierung aller untersuchten Homologen erwies sich konserviert. Ebenso wie die NTD, ist auch die CTD der Spinnenseide ein α-helikales Bündel, welche jedoch zwei Spidroine kovalent miteinander verbindet. Die Orientierung der verknüpften Domäne bestimmt bereits die zukünftige Faserstruktur. Ähnlich wie bei der NTD, waren Faltung und Dimerisierung der CTD bisher nicht im Detail be-schrieben. Durch eine detaillierte Analyse der CTD der E. australis konnte gezeigt werden, dass das Protein sich in einem dreistufigen Mechanismus faltet und außerdem der Familie der geknoteten Proteine angehört. Bei genauerer Betrachtung der Aminosäurezusammensetzung der E. australis NTD konnte ein ungewöhnlich hoher Anteil der Aminosäure Methionin (Met) festge¬stellt werden. Um diesen überraschenden Sachverhalt zu verstehen, habe ich alle im Kern liegenden Met zu Leucin (Leu) mutiert. Die Ergebnisse zeigten eine extrem stabilisierte NTD, welche sich nun 50-fach schneller faltete. Die Protein¬struktur der Mutante wurde in Lösung mittels NMR Spektroskopie ermittelt. Das Ergebnis lieferte deckungsgleiche Strukturen von Mutante und Wildtyp im monomeren Zustand. Allerdings zeigten NTD Dimerisierungs-Versuche, dass die Assoziations-fähigkeit der Mutante erheblich beeinträchtigt war. Untersuchungen der nativen Dynamik mittels NMR und Fluoreszenzkorrelationsspektroskopie zeigten, dass Met diese entscheidend verstärkt, was zu einem eng assoziierten Dimer führte. Im Versuch die Dynamik wieder künstlich herzustellen, habe ich neue Met in die Mutante eingeführt, auf Sequenzpositionen welche natürlicherweise Leu aufweisen. Somit wurde die ursprüngliche Anzahl an Met in der NTD wiederher¬gestellt, jedoch an anderen Positionen. Obwohl das Protein wie erwartet an Stabilität verlor, konnte dessen Funktionalität nicht wiederhergestellt werden. Um unsere Erkenntnisse auf andere Proteine zu übertragen, wurden Met Reste künstlich in ein Hsp90 Protein eingeführt. Es konnte eine leicht verbesserte Funktionalität des Proteins beobachtet werden. Schließlich wurde versucht, die für die CTD und NTD gewonnen Erkenntnisse auf intakte, jedoch verkürzte Spidroine zu übertragen. Dazu wurden Spidroine mit weniger repetitiven Mittelsegmenten mittels rekombinanten Methoden hergestellt. Die Synthese dieser Spidroine erwies sich als Herausforderung. Allerdings zeigten die vorläufigen Ergebnisse, dass eine Verallgemeinerung der Erkenntnisse der isolierten Domänen auf das Volllängen-Spidroin möglich ist. KW - Spinnenseide KW - Fluoreszenzspektroskopie KW - Terminale Domaine KW - Spider Silk KW - Fluorescence spectroscopy KW - Terminal domains Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193455 ER - TY - THES A1 - Schulze, Andrea T1 - Investigating the mechanism of the Hsp90 molecular chaperone using photoinduced electron transfer fluorescence quenching T1 - Untersuchungen zum Mechanismus des molekularen Chaperons Hsp90 mittels photoinduzierter Elektronentransfer-Fluoreszenzlöschung N2 - The molecular chaperone Hsp90 facilitates the folding and activation of a wide array of structurally and functionally diverse client proteins. Hsp90 presents a central node of protein homeostasis and is frequently involved in the development of many human diseases. Although Hsp90 is a promising target for disease treatment, the mechanism by which Hsp90 facilitates client recognition and maturation is poorly understood. The shape of the homodimeric protein resembles a molecular clamp that opens and closes in response to binding and hydrolysis of ATP. Structural studies reveal a network of distinct local conformational rearrangements that coordinate the slow transition into the hydrolysis-active, closed state configuration (time order of minutes). However, the kinetics of local conformational changes remain elusive because spectroscopic tools that can detect them have been missing so far. Fluorescence quenching of extrinsic fluorophores by the natural amino acid Tryptophan is based on a photoinduced electron transfer (PET) reaction, which requires sub-nanometer contact between fluorophore and Tryptophan. This quenching mechanism has been developed into a 1-nm spectroscopic tool for the detection of rapid protein folding dynamics. Within the scope of this doctoral thesis, PET-reporter systems were designed to investigate the kinetics of local conformational motions that are part of the mechanistic core of the Hsp90 chaperone cycle. ATP-triggered kinetics of closure of the ATP-lid as well as swapping of the N-terminal ß-strand across subunits and association of the N-terminal and middle-domain were estimated in solution. Bulk experiments revealed that local motions occur on similar timescales and are in good agreement with the ATP-hydrolysis rate. Functional mutations demonstrated that local motions act cooperatively. Furthermore, the lid was shown to close via a two-step process consisting of a rapid lid-reconfiguration in direct response to ATP-binding, followed by slow closure of the lid. The co-chaperone Aha1 seems to act early in the chaperone cycle by remodelling of the lid and by stabilization of apo Hsp90 in a NM-domain pre-associated conformation. A two-colour single-molecule PET microscopy method was developed to observe local motions at remote positions simultaneously and in real-time. Thus, directionality within the network of local conformational changes could be revealed. In a first attempt, the feasibility of detecting PET-complexes on the single-molecule surface was tested on Hsp90 constructs that report on only one motion (one-colour single-molecule PET microscopy). PET-quenched complexes could be distinguished from photobleached fluorophores through oxidation by molecular oxygen, resulting in fluorescence recovery. In two-colour experiments, a dimmed state was identified for PET-quenched complexes, but not for all of the used PET-reporter systems. Results suggest that local motions occur simultaneously within the time-resolution of the experiment (0.3 sec). Furthermore, bi-exponential kinetics of transition into the closed clamp configuration indicate a more complex mechanism of clamp-closure than of clamp-opening, which could be well described by a mono-exponential function. N2 - Das molekulare Chaperon Hsp90 ermöglicht die korrekte Faltung und Aktivierung eines breiten Spektrums an strukturell und funktionell unterschiedlichen Klienten-Proteinen. Hsp90 bildet einen zentralen Knotenpunkt der Protein-Homöostase und ist an der Entstehung einer Vielzahl von humanen Erkrankungen beteiligt. Trotz des vielversprechenden Potentials, das Hsp90 als Zielprotein für die Behandlung von Erkrankungen besitzt, ist der Mechanismus, durch den Hsp90 seinen Klienten erkennt und dessen Reifung gewährt, noch unbekannt, Die Gestalt des homodimeren Proteins ähnelt einer molekularen Klammer, die sich durch Bindung und Hydrolyse von ATP öffnet und schließt. Strukturelle Studien zeigen ein Netzwerk an weit voneinander entfernt liegenden lokalen Konformationsänderungen, die den langsamen Übergang (im Bereich von Minuten) in die Hydrolyse-aktive, geschlossene Konfiguration koordinieren. Allerdings sind die Kinetiken der lokalen Konformationsänderungen unbekannt, da es bisher noch keine spektroskopische Methode gibt, die diese detektieren könnte. Die natürliche Aminosäure Tryptophan kann durch eine photoinduzierte-Elektronentransfer-(PET)-Reaktion die Fluoreszenz extrinsischer Fluorophore löschen. Fluorophor und Tryptophan müssen hierfür in einer Kontakt-Distanz im sub-nanometer Bereich stehen. Dieser Lösch-Mechanismus wurde zu einem 1-nm sensitiven, spektroskopischen Werkzeug entwickelt, das für die Detektion schneller Proteinfaltungsdynamiken angewendet werden kann. Im Rahmen der hier vorliegenden Dissertation wurden PET-Reporter-Systeme entworfen. Diese dienten der Untersuchung lokaler Konformationsänderungen, die Teil des mechanistischen Kerns des Hsp90-Chaperon-Zyklus sind. ATP-induzierte Kinetiken des ATP-Lid Schlusses sowie des Untereinheiten-Wechsels des N-terminalen ß-Faltblatts als auch der Assoziation der N-terminalen mit der mittleren Domäne wurden ermittelt. In Ensemble Experimenten konnte gezeigt werden, dass lokale Bewegungen auf ähnlichen Zeitskalen stattfinden und in guter Übereinstimmung mit der ATP-Hydrolyserate sind. Durch die Anwendung von Funktionsmutanten konnte demonstriert werden, dass die lokalen Bewegungen zusammenwirkend geschehen. Des Weiteren wurde gezeigt, dass der Lid anhand eines zweistufigen Prozesses schließt. Dieser besteht aus einer, durch die Bindung von ATP ausgelösten, raschen Lid-Rekonfiguration, gefolgt von der langsamen Schließung des Lids. Das Co-Chaperon Aha1 scheint den ATPase-Zyklus bereits in einem frühen Stadium, durch die Remodellierung der Lid-Konformation und die Stabilisierung des apo-Hsp90 in einer vor-assoziierten Konformation der NM-Domänen, zu beeinflussen Des Weiteren wurde eine Zwei-Farben-Einzelmolekül-PET-Mikroskopie-Methode entwickelt, die es ermöglicht lokale Bewegungen an entfernten Positionen simultan und in Echtzeit zu beobachten. Dadurch kann festgestellt werden, ob eine Richtungscharakteristik innerhalb des Netzwerks lokaler Konformationsänderungen besteht. Hierfür wurde zunächst anhand von einfach markierten Hsp90 Konstrukten, die nur eine Bewegung darstellen, getestet ob die Detektion von PET-Komplexen auf der Einzelmoleküloberfläche möglich ist (Ein-Farben-Einzelmolekül-PET-Mikroskopie). Die Fluoreszenz PET-gelöschter Komplexe konnte mittels Oxidation durch molekularen Sauerstoff wiederhergestellt werden, wodurch eine Unterscheidung zu photogebleichten Fluorophoren möglich war. In Zwei-Farben-Experimenten konnte zudem ein gedimmter Zustand der PET-gelöschten Fluorophore festgestellt werden, allerdings nicht für jedes der verwendeten PET-Reportersysteme. Die Ergebnisse deuten auf ein innerhalb der Zeitauflösung des Experiments (0.3 sec) gleichzeitiges Auftreten der lokalen Bewegungen hin. Des Weiteren scheint der Mechanismus des Klammerschlusses komplexer zu sein, als der Mechanismus der Klammeröffnung. Während die Kinetiken der Klammeröffnung durch eine mono-exponentielle Fit-funktion angepasst werden konnten, benötigte der Klammerschluss eine bi-exponentielle Anpassungsfunktion. KW - Hitzeschock-Proteine KW - Einzelmolekülmikroskopie KW - Fluoreszenzspektroskopie KW - Kinetik KW - Heat shock protein 90 KW - Hitzeschockprotein 90 KW - photoinduzierter Elektronentransfer KW - photoinduced electron transfer KW - single molecule microscopy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162155 ER - TY - THES A1 - Draeger, Simon T1 - Rapid Two-Dimensional One-Quantum and Two-Quantum Fluorescence Spectroscopy T1 - Schnelle zweidimensionale Einfach- und Doppelquantenfluoreszenzspektroskopie N2 - In den letzten zwei Jahrzehnten hat sich die kohärente mehrdimensionale Femtosekunden- Spektroskopie zu einem leistungsstarken und vielseitigen Instrument zur Untersuchung der chemischen Dynamik einer Vielzahl von Quantensystemen entwickelt. Die Kombination von transienten Informationen, die der Anrege-Abrage-Spektroskopie entsprechen, mit Informationen zur Kopplung zwischen energetischen Zuständen und der Systemumgebung ermöglicht einen umfassenden Einblick in atomare und molekulare Eigenschaften. Viele experimentelle 2D-Aufbauten verwenden den kohärenzdetektierten Ansatz, bei dem nichtlineare Systemantworten als kohärente elektrische Felder emittiert und räumlich getrennt von den Anregungspulsen detektiert werden. Als Alternative zu diesem experimentell anspruchsvollen Ansatz wurde die populationsbasierte 2D-Spektroskopie etabliert. Hier wird die kohärente Information in den Phasen einer kollinearen Anregungspulsfolge codiert und aus inkohärenten Signalen wie Fluoreszenz über Phase Cycling extrahiert. Grundsätzlich kann durch die Verwendung von Fluoreszenz als Observable eine Sensitivität bis zum Einzelmolekülniveau erreicht werden. Ziel dieser Arbeit war die Realisierung eines pulsformergestützten vollständig kollinearen fluoreszenzdetektierten 2D-Aufbaus und die Durchführung von Proof-of- Principle-Experimenten in der Flüssigphase. Dieser inhärent phasenstabile und kompakte Aufbau wurde in Kapitel 3 vorgestellt. Der verwendete Pulsformer ermöglicht eine Amplituden- und Phasenmodulation von Schuss zu Schuss. Zwei verschiedene Arten von Weißlichtquellen wurden angewendet und hinsichtlich ihrer jeweiligen Vorteile für die 2D-Fluoreszenzspektroskopie bewertet. Eine Vielzahl von Artefaktquellen, die mit dem vorliegenden Aufbau auftreten können, wurden diskutiert und Korrekturschemata und Anweisungen zur Vermeidung dieser Artefakte bereitgestellt. In Kapitel 4 wurde der Aufbau anhand einer Vierpulssequenz mit Cresylviolett in Ethanol demonstriert. Es wurde ein detailliertes Datenerfassungs- und Datenanalyseverfahren vorgestellt, bei dem Phase Cycling zur Extraktion der nichtlinearen Beiträge verwendet wird. Abhängig vom Phase Cycling-Schema ist es möglich, alle nichtlinearen Beiträge in einer einzigen Messung aufzudecken. Literaturbekannte Oszillationen von Cresylviolett während der Populationszeit konnten reproduziert werden. Aufgrund der Messung in einer Umgebung im Rotating Frame und einer 1 kHz Schuss-zu-Schuss Pulsinkrementierung war es möglich, ein 2D-Spektrum für eine Populationszeit in 6 s zu erhalten. Eine Fehlerevaluierung hat gezeigt, dass eine zehnfache Mittelwertbildung (1 min) ausreicht, um eine mittlere quadratische Abweichung von < 0:05 gegen� uber einer 400-fachen Mittelwertbildung zu erhalten, was beweist, dass das verwendete Messschema gut geeignet ist. Die Realisierung des ersten experimentellen fluoreszenzdetektierten 2Q-2D-Experiments und der erste experimentelle Zugang zum theoretisch vorhergesagten 1Q-2Q-Beitrag wurden in Kapitel 5 vorgestellt. Zu diesem Zweck wurde eine Dreipulssequenz auf Cresylviolett in Ethanol angewendet und die experimentellen Ergebnisse wurden mit Simulationen eines einfachen Sechs-Level-Systems verglichen. Im Gegensatz zur kohärenzdetektierten 2Q-2D-Spektroskopie sind bei dem vorgestellten Aufbau keine nichtresonanten Lösungsmittelsignale und Streuungsbeiträge sichtbar und es ist kein zusätzliches Phasing-Verfahren erforderlich. Durch eine Kombination aus Experimenten und systematischen Simulationen wurden Informationen über die Relaxation der Lösungsmittelhülle und die Korrelationsenergie gewonnen. Auf der Basis von Simulationen wurden Effekte der Pfadauslöschung diskutiert, die darauf schließen lassen, dass die 1Q-2Q-2D-Spektroskopie möglicherweise die quantitative Analyse für molekulare Systeme erleichtert, die eine starke nichtstrahlende Relaxation aus höheren elektronischen Zuständen aufweisen. Zusammenfassend ist es mit der vorgestellten Methode möglich, alle nichtlinearen Beiträge mit einer schnellen Datenaufnahme und einem einfach einzurichtenden Aufbau zu erfassen. Die gezeigten Proof-of-Principle-Experimente stellen eine Erweiterung der 2D-Spektroskopie-Werkzeugpalette dar und bieten eine fundierte Grundlage für zukünftige Anwendungen wie mehrdimensionale Spektroskopie, mehrfarbige 2D-Spektroskopie oder die Kombination von simultanen Flüssig- und Gasphasen-2D-Experimenten. N2 - In the last two decades, coherent multidimensional femtosecond spectroscopy has become a powerful and versatile tool to investigate chemical dynamics of a broad variety of quantum systems. The combination of transient information, equivalent to pumpprobe spectroscopy, with information about coupling between energetic states and the system environment allows an extensive insight into atomic and molecular properties. Many experimental 2D setups employ the coherence-detected approach, where nonlinear system responses are emitted as coherent electric _elds which are detected after spatial separation from the excitation pulses. As an alternative to this experimentally demanding approach, population-based 2D spectroscopy has been established. Here, the coherent information is encoded in the phases of a collinear excitation-pulse train and extracted from incoherent signals like uorescence via phase cycling. In principle, the use of uorescence as observable can boost the sensitivity down to the single-molecule level. The aim of this work was the realization of a pulse-shaper assisted fully collinear uorescence-detected 2D setup and the conducting of proof-of-principle experiments in the liquid phase. This inherently phase-stable and compact setup has been presented in chapter 3, with the utilized pulse shaper granting amplitude and phase modulation on a shot-to-shot basis. Two di_erent types of white-light sources have been applied and evaluated with regard to their respective advantages for 2D uorescence spectroscopy. A variety of artifact sources that can occur with the present setup have been discussed, and correction schemes and instructions for avoiding these artifacts have been provided. In chapter 4, the setup has been demonstrated by employing a four-pulse sequence on cresyl violet in ethanol. A detailed data-acquisition and data-analysis procedure has been presented, where phase cycling is used for extraction of the nonlinear contributions. Depending on the phase-cycling scheme, it is possible to recover all nonlinear contributions in a single measurement. Well-known quantum-beating behavior of cresyl violet during the population time could be reproduced. Due to measuring in a rotating-frame environment and 1 kHz shot-to-shot pulse incrementation, it was possible to obtain a 2D spectrum for one population time in 6 s. Via error evaluation it has been shown that 10_ averaging (1 min) is su_cient to obtain a root-mean-square error of < 0:05 compared to 400_ averaging, proving that the utilized acquisition scheme is well suited. The realization of the _rst experimental uorescence-detected 2Q 2D experiment and the _rst experimental access to the theoretically predicted 1Q-2Q contribution KW - Two-dimensional spectroscopy KW - Ultrafast spectroscopy KW - Fluorescence KW - Chemical Dynamics KW - Physical chemistry KW - Fluoreszenzspektroskopie KW - Optische Spektroskopie KW - Zwei-Dimensional Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-198164 ER - TY - THES A1 - Götz, Sebastian Reinhold T1 - Nonlinear spectroscopy at the diffraction limit: probing ultrafast dynamics with shaped few-cycle laser pulses T1 - Nichtlineare Spektroskopie am Beugungslimit: Untersuchung ultraschneller Dynamiken mit geformten Laserpulsen N2 - An experimental setup for probing ultrafast dynamics at the diffraction limit was developed, characterized and demonstrated in the scope of the thesis, aiming for optical investigations while simultaneously approaching the physical limits on the length and timescale. An overview of this experimental setup was given in Chapter 2, as well as the considerations that led to the selection of the individual components. Broadband laser pulses with a length of 9.3 fs, close to the transform limit of 7.6 fs, were focused in a NA = 1.4 immersion oil objective, to the diffraction limit of below 300 nm (FWHM). The spatial focus shape was characterized with off-resonance gold nanorod scatterers scanned through the focal volume. For further insights into the functionality and limitations of the pulse shaper, its calibration procedure was reviewed. The deviations between designed and experimental pulse shapes were attributed to pulse-shaper artifacts, including voltage-dependent inter-layer as well as intra-layer LCD-pixel crosstalk, Fabry-Pérot-type reflections in the LCD layers, and space-time coupling. A pixel-dependent correction was experimentally carried out, which can be seen as an extension of the initial calibration to all possible voltage combinations of the two LCD layers. The capabilities of the experimental setup were demonstrated in two types of experiments, targeting the nonlinearity of gold (Chapter 3) as well as two-dimensional spectroscopy at micro-structured surfaces (Chapter 4). Investigating thin films, an upper bound for the absolute value for the imaginary part of the nonlinear refractive index of gold could be set to |n′′ 2 (Au)| < 0.6·10−16 m2/W, together with |n′ 2 (Au)| < 1.2·10−16 m2/W as an upper bound for the absolute value of the real part. Finite-difference time-domain simulations on y-shaped gold nanostructures indicated that a phase change of ∆Φ ≥ 0.07 rad between two plasmonic modes would induce a sufficient change in the spatial contrast of emission to the far-field to be visible in the experiment. As the latter could not be observed, this value of ∆Φ was determined as the upper bound for the experimentally induced phase change. An upper bound of 52 GW/cm2 was found for the damage threshold. In Chapter 4, a novel method for nonlinear spectroscopy on surfaces was presented. Termed coherent two-dimensional fluorescence micro-spectroscopy, it is capable of exploring ultrafast dynamics in nanostructures and molecular systems at the diffraction limit. Two-dimensional spectra of spatially isolated hotspots in structured thin films of fluorinated zinc phthalocyanine (F16ZnPc) dye were taken with a 27-step phase-cycling scheme. Observed artifacts in the 2D maps were identified as a consequence from deviations between the desired and the experimental pulse shapes. The optimization procedures described in Chapter 2 successfully suppressed the deviations to a level where the separation from the nonlinear sample response was feasible. The experimental setup and methods developed and presented in the scope of this thesis demonstrate its flexibility and capability to study microscopic systems on surfaces. The systems exemplarily shown are consisting of metal-organic dyes and metallic nanostructures, represent samples currently under research in the growing fields of organic semiconductors and plasmonics. N2 - Ein experimenteller Aufbau zur Untersuchung von ultraschnellen Dynamiken am Beugungslimit wurde in dieser Arbeit entwickelt, charakterisiert und demonstriert. Sie hatte zum Ziel, im Rahmen von optischen Beobachtungen gleichzeitig an die physikalischen Grenzen von Längen- und Zeitskalen zu gehen Es wurde ein Überblick über den verwendeten experimentellen Aufbau gegeben, zusammen mit den Überlegungen, die zur Auswahl der einzelnen Komponenten geführt haben. Für die Pulslänge der spektral breitbandigen Laserpulse wurde auf 9.3 fs gemessen, was nahe an der transformlimitierten Dauer von 7.6 fs liegt. Im beugungslimitierten Fokus eines Immersionsölobjektivs mit einer numerischen Apertur von 1.4 konnte das Licht räumlich auf eine Halbwertsbreite von unter 300 nm komprimiert werden. Der Fokus des Mikroskopobjektivs wurde mit Hilfe der Streuung von nicht resonanten Nanopartikeln aus Gold ausgemessen, indem diese räumlich durch den Fokus gerastert wurden. Zur weiteren Untersuchung des Funktionsumfangs und der Grenzen des benutzten Pulsformers wurde dessen Eichprozedur geprüft. Die Abweichungen zwischen gewünschten und tatsächlich angelegten Pulsformen wurden auf Artefakte des Pulsformers zurückgeführt. Diese Artefakte beinhalten eine spannungsabhängige Beeinflussung der LCD-Pixel sowohl zwischen benachbarten Pixeln einer Schicht als auch zwischen Pixeln unterschiedlicher Schichten. Eine pixelabhängige Korrektur wurde implementiert, die eine Erweiterung der ursprünglichen Kalibrierung auf alle möglichen Spannungskombinationen der LCD-Pixel darstellt. Die Möglichkeiten experimentellen Aufbaus wurden mit zwei Arten von Experimenten demonstriert: Messungen zur Bestimmung des nichtlinearen Brechungsindexes von Gold (Kapitel 3) sowie zweidimensionale Spektroskopie an mikrostrukturierten Oberflächen (Kapitel 4). Für den nichtlinearen Brechungsindexes von Gold konnte an Dünnschichten eine obere Grenze von |n′′ 2 (Au)| < 0.6·10−16 m2/W für den Betrag des Imaginärteils und |n′ 2 (Au)| < 1.2·10−16 m2/W für den Betrag des Realteils festgesetzt werden. Simulationen mit der Finite-Differenzen-Methode an Y-förmige Nanostrukturen aus Gold zeigten, dass eine Phasenänderung von ∆Φ ≥ 0.07 rad zwischen zwei plasmonischen Moden ausreichend für eine experimentell sichtbare Kontraständerung der Fernfeldabstrahlung wäre. Da letztere nicht beobachtet werden konnte, wurde dieser Wert für ∆Φ als obere Grenze für die experimentell eingeführte Phasenänderung festgesetzt. Für die Zerstörschwelle wurde eine obere Grenze von 52 GW/cm2 gefunden. In Kapitel 4, wurde eine neue Methode für nichtlineare Spektroskopie an Oberflächen vorgestellt. Sie trägt den Namen ”Kohärente zweidimensionale Fluoreszenz-Mikrospektroskopie“ und eignet sich zur Untersuchung ultraschneller Dynamiken in Nanostrukturen und molekularen Systemen am Beugungslimit. Es wurden 2D-Spektren von räumlich isolierten Hotspots einer strukturierten Zink-Phthalocyanin (F16ZnPc) Dünnschicht mit 27-fachem Phasecycling aufgenommen. Als Grund für Artefakte in den 2D-Karten wurden Abweichungen zwischen den gewünschten und experimentellen Pulsformen identifiziert. Durch die in Kapitel 2 vorgestellten Optimierungen konnten die Abweichungen allerdings so stark reduziert werden, dass deren Trennung von der nichtlinearen Antwort der Probe möglich wurde. Die Flexibilität und der Funktionsumfang zur Analyse mikroskopischer Systeme der im Rahmen dieser Arbeit entwickelten experimentellen Aufbauten und Methoden wurde demonstriert. Repräsentativ für die wachsenden Forschungsfelder der organischen Halbleiter und der Plasmonik wurden exemplarisch Systeme bestehend aus metall-organischen Farbstoffen und metallischen Nanostrukturen untersucht. KW - Ultrakurzzeitspektroskopie KW - Fluoreszenzspektroskopie KW - Fourier-Spektroskopie KW - Nanostruktur KW - Konfokale Mikroskopie KW - Coherent Multidimensional Spectroscopy KW - Laser Pulse Shaping KW - LCD Pulse Shaper KW - Surface Plasmon KW - Kohärente Multidimensionale Spektroskopie KW - Laserpulsformung KW - LCD Pulsformer KW - Oberflächenplasmon Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192138 ER - TY - THES A1 - Holzapfel, Marco T1 - Photoinduced Charge Transfer Processes in Triarylamine Based Redox Cascades T1 - Photoinduzierte Ladungstransferprozesse in Triarylamin-Redoxkaskaden N2 - In the first part of this work a new approach to measure transient absorption spectra of fluorescent compounds by means of laser flash photolysis technique was presented. Generally, the recorded transient absorption signal consists of transient absorption, fluorescence and ground state bleaching. Thus, for fluorescent chromophores a fluorescence correction is indispensable in order to obtain undisturbed absorption decay curves as well as accurate transient absorption spectra. Due to time response characteristics of the PMT detector the fluorescence contribution cannot be corrected by recording the fluorescence separately. Measuring two transient absorption signals with probe light differing in intensity, compounds with quantum yields up to ~ 35 % can be investigated. This is a major improvement because transient absorption spectroscopy is a powerful method to gain insight into the kinetics and the energy of excited states and information in the time domain of fluorescence are no longer lost. In the second part the synthesis and the photophysical characterisation of redox cascades were reported. These cascades consist of an acridine acceptor and up to three triarylamine donor subunits. The redox potentials of the triarylamines were tuned by adequate substituents in the para-position of the phenyl ring to ensure a directed redox gradient. Upon photoexcitation a locally excited state or a CT state is populated which then injects a hole onto the adjacent donor and consequently results in a CS state. Fluorescence and transient absorption measurements revealed that HT depends strongly on donor strength and solvent polarity. Formation of a CS state was only observed in case of strong terminal donors or polar solvents. A low lying localised triplet state acts as an energy trap and quenches all CS states even in case of the cascade with the strongest terminal donor in very polar solvents. Furthermore, population of a CS state catalyses the formation of this triplet states which results in a shorter lifetime of the CS state compared to the lifetime of the CT state of the corresponding reference compound. Compared to redox cascades already reported in literature, the electronic coupling between the redox centres was decreased by sterical as well as electronic effects. To prolong the lifetime of the CS state saturated spacers on the one hand and a perpendicular orientation of the acceptor and the adjacent donor on the other hand were selected. The twisting of the subunits forming the CT state results in a higher degree of charge separation but its contribution to increase the lifetimes of the CS states is of minor importance. The longer lifetime of the CS states can be ascribed to the saturated spacers. Experimental data in combination with calculated values indicate that charge recombination takes place in the Marcus normal region by a superexchange mechanisms. Although charge recombination of the known cascades is located in the Marcus inverted region, these CS states decay faster than the CS states of the compounds investigated in this work. N2 - Im ersten Teil der vorliegenden Arbeit wurde eine neue Methode vorgestellt, mit dem transiente Absorptionsspektren von fluoreszierenden Verbindungen mit Hilfe der Laser-Blitzlichtphotolyse aufgenommen werden können. Ein transientes Absorptionssignal setzt sich im Allgemeinen aus transienter Absorption, Fluoreszenz und einer Ausbleichung des Grundzustands zusammen. Daher ist es für fluoreszierende Verbindungen unerlässlich, die Fluoreszenz zu korrigieren, um sowohl einwandfreie Abklingkurven als auch korrekte Spektren zu erhalten. Aufgrund der Charakteristik der Ansprechzeit des Photomultiplier-Detektors kann der Fluoreszenzbeitrag nicht durch ein eigens aufgenommenes Fluoreszenzsignal korrigiert werden. Jedoch können Verbindungen mit einer Fluoreszenzquantenausbeute bis ungefähr 35 % fehlerfrei gemessen werden, sofern das transiente Signal aus zwei Messungen mit unterschiedlicher Weißlichtintensität bestimmt wird. Dieser neue Ansatz zur Ermittlung transienter Absorptionsspektren ist eine entscheidende Verbesserung, da die Laser-Blitzlichtphotolyse eine leistungsstarke Methode zur Ermittlung kinetischer und energetischer Eigenschaften angeregter Zustände darstellt. Im zweiten Abschnitt wurde die Synthese von Redoxkaskaden vorgestellt und gerichtete Elektronentransferprozesse an diesen Verbindungen untersucht. Die Chromophore bestehen stets aus einem Acridin-Akzeptor und bis zu drei Triarylamin-Untereinheiten als Donoren. Die Redoxpotenziale der Triarylamine können in gewissem Maße durch geeignete Substituenten in para-Position der Phenylringe abgestimmt werden, womit ein gerichteter Redoxgradient erzielt wird. Nach Anregung mit Licht geeigneter Wellenlänge wird ein lokal angeregter oder ein CT-Zustand bevölkert. Anschließend wird ein Loch in die benachbarte Donoreinheit injiziert, was schließlich zu einem ladungsgetrennten Zustand führt. Fluoreszenz- und transiente Absorptionsmessungen zeigen, dass der Lochtransfer in starkem Maße von der Lösungsmittelpolarität sowie der Stärke des terminalen Donors abhängt. Die Ausbildung eines ladungsgetrennten Zustands konnte nur bei starken terminalen Donoren oder polaren Lösungsmitteln beobachtet werden. Ein energetisch tief liegender lokal angeregter Triplettzustand agiert als energetische Falle und löscht alle ladungsgetrennten Zustände – selbst im Falle der stärksten Donoruntereinheit in sehr polaren Lösungsmitteln. Darüber hinaus beschleunigt die Bevölkerung eines ladungsgetrennten Zustands die Ausbildung dieses Triplettzustands, was sich in einer kürzeren Lebensdauer dieses ladungsgetrennten Zustands, verglichen mit dem CT-Zustand der Referenzverbindung, äußert. Die elektronische Kopplung zwischen den einzelnen Redoxzentren wurde im Vergleich zu ähnlichen bereits bekannten Redoxkaskaden sowohl durch sterische als auch durch elektronische Effekte verringert. Um die Lebensdauer des ladungsgetrennten Zustands zu verlängern, wurden einerseits gesättigte Einheiten, die die Untereinheiten verbrücken, eingebaut. Andererseits wurde mit Hilfe sterischer Faktoren die Akzeptoreinheit gegenüber dem benachbarten Donor verdrillt, was zwar in einer stärker ausgeprägten Ladungstrennung resultiert, jedoch nur geringfügig zu einer Verlängerung des ladungsgetrennten Zustands beiträgt. Somit kann die verlängerte Lebensdauer dieses ladungsgetrennten Zustands eindeutig auf die gesättigten Brückeneinheiten zurückgeführt werden. Experimentelle Daten stimmen mit berechneten Größen dahin gehend überein, dass die Ladungsrekombination in der normalen Marcus-Region über einen Superaustausch-Mechanismus erfolgt. Obwohl diese Rekombination bei den bekannten Kaskaden in der invertierten Marcus-Region erfolgt, werden die entsprechenden ladungsgetrennten Zustände schneller entvölkert als bei den Verbindungen, die Gegenstand dieses Kapitels waren. KW - Ladungstransfer KW - Fluoreszenzspektroskopie KW - transiente Absorptionsspektroskopie KW - Redoxkaskade KW - Triplett KW - transient absorption spectroscopy KW - redox cascade KW - triplet Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25276 ER -