TY - THES A1 - Raab, Annette T1 - The role of Rgs2 in animal models of affective disorders T1 - Über die Bedeutung von Rgs2 in Tiermodellen affektiver Störungen N2 - Anxiety and depressive disorders result from a complex interplay of genetic and environmental factors and are common mutual comorbidities. On the level of cellular signaling, regulator of G protein signaling 2 (Rgs2) has been implicated in human and rodent anxiety as well as rodent depression. Rgs2 negatively regulates G protein-coupled receptor (GPCR) signaling by acting as a GTPase accelerating protein towards the Gα subunit. The present study investigates, whether mice with a homozygous Rgs2 deletion (Rgs2-/-) show behavioral alterations as well as an increased susceptibility to stressful life events related to human anxiety and depressive disorders and tries to elucidate molecular underlying’s of these changes. To this end, Rgs2-/- mice were characterized in an aversive-associative learning paradigm to evaluate learned fear as a model for the etiology of human anxiety disorders. Spatial learning and reward motivated spatial learning were evaluated to control for learning in non-aversive paradigms. Rgs2 deletion enhanced learning in all three paradigms, rendering increased learning upon deletion of Rgs2 not specific for aversive learning. These data support reports indicating increased long-term potentiation in Rgs2-/- mice and may predict treatment response to conditioning based behavior therapy in patients with polymorphisms associated with reduced RGS2 expression. Previous reports of increased innate anxiety were corroborated in three tests based on the approach-avoidance conflict. Interestingly, Rgs2-/- mice showed novelty-induced hypo-locomotion suggesting neophobia, which may translate to the clinical picture of agoraphobia in humans and reduced RGS2 expression in humans was associated with a higher incidence of panic disorder with agoraphobia. Depression-like behavior was more distinctive in female Rgs2-/- mice. Stress resilience, tested in an acute and a chronic stress paradigm, was also more distinctive in female Rgs2-/- mice, suggesting Rgs2 to contribute to sex specific effects of anxiety disorders and depression. Rgs2 deletion was associated with GPCR expression changes of the adrenergic, serotonergic, dopaminergic and neuropeptide Y systems in the brain and heart as well as reduced monoaminergic neurotransmitter levels. Furthermore, the expression of two stress-related microRNAs was increased upon Rgs2 deletion. The aversive-associative learning paradigm induced a dynamic Rgs2 expression change. The observed molecular changes may contribute to the anxious and depressed phenotype as well as promote altered stress reactivity, while reflecting an alter basal stress level and a disrupted sympathetic tone. Dynamic Rgs2 expression may mediate changes in GPCR signaling duration during memory formation. Taken together, Rgs2 deletion promotes increased anxiety-like and depression-like behavior, altered stress reactivity as well as increased cognitive function. N2 - Angststörungen sowie Depressionserkrankungen entstehen in der Regel aus der Interaktion genetischer Faktoren mit Umwelteinflüssen und sind häufig gegenseitige Begleiterkrankungen. Das Protein, Regulator of G protein signaling 2 (Rgs2), wurde mit dem vermehrten Auftreten von Angststörungen im Menschen, sowie mit angstähnlichem sowie depressionsähnlichem Verhalten im Mausmodell assoziiert. Rgs2 beeinflusst auf zellulärer Ebene G Protein gekoppelte Signalwege, indem es die GTPase Aktivität der Gα Untereinheit beschleunigt. In der vorliegenden Arbeit wurden die Folgen einer homozygoten Rgs2-Defizienz im Mausmodell untersucht. In Anlehnung an die humanen Krankheitsbilder wurde angst- und depressions-ähnliches Verhalten, Stress Reaktivität und den phänotypischen Veränderungen zugrundeliegende molekulare Ursachen evaluiert. Erlernte Furcht gilt als Model der Ätiologie humaner Angsterkrankungen. Aus diesem Grund, wurden Rgs2-/- Mäuse in einem aversiv-assoziativen Lernmodell, der sogenannten Furcht-Konditionierung, untersucht. Dabei zeigte sich erhöhtes Furchtlernen und Furchtgedächtnis in Rgs2-/- Mäusen. Um zu zeigen, dass die erhöhte kognitive Fähigkeit spezifisch für erlernte Furcht sei, wurde räumliches Lernen in zwei Modellen getestet. Rgs2-Defizienz verbesserte auch in diesen Modellen die Lernfähigkeit. Somit konnte gezeigt werden, dass verbesserte kognitive Fähigkeit nicht spezifisch für emotionales Lernen war. Diese Daten auf Verhaltensebene unterstützen bisherige Befunde von erhöhter Langzeit Potenzierung im Hippocampus von Rgs2-/- Mäusen. Im Menschen könnte eine durch Polymorphismen vermittelte reduzierte Rgs2 Expression das Therapieansprechen auf konditionierungsbasierte Verhaltenstherapien verbessern. Bisherige Befunde von erhöhter, angeborener Angst in Rgs2-/- Mäusen konnten in drei Tests, basierend auf dem Annäherungs-Vermeidungs-Konflikt, bestätigt werden. Interessanterweise, zeigten Rgs2-/- Mäuse in allen Tests verminderte Lokomotion in neuen, ungewohnten Umgebungen. Dies könnte auf Neophobie und somit auf das Krankheitsbild der Agoraphobie im Menschen hindeuten. Tatsächlich wurden RGS2 Polymorphismen bereits mit einer erhöhten Inzidenz von Panikstörung mit Agoraphobie assoziiert. Rgs2-/- Mäuse zeigten zudem depressionsähnliches Verhalten, welches in weiblichen Mäusen ausgeprägter war. Des Weiteren zeigten, insbesondere weibliche Rgs2-/- Mäuse, erhöhte Stress Resilienz nach akuter und chronischer Stressexposition. Rgs2 könnte somit ein Faktor der Geschlechtsspezifität von Angst und Depressionserkrankungen sein. Rgs2-Defizienz konnte mit Expressionsänderungen von G Protein gekoppelten Rezeptoren des adrenergen, serotonergen, dopaminergen und Neuropeptid Y Systems in Gehirn und Herz, sowie mit verminderten Spiegeln monoaminerger Neurotransmitter assoziiert werden. Diese Veränderungen könnten zu dem beobachteten ängstlichen sowie depressiven Phänotyp und der veränderten Stress Reaktivität beitragen. Des Weiteren war die Expression zweier, in der Stressreaktion involvierten, microRNAs erhöht. Dies könnte auf einen veränderten basalen Stress Level hindeuten. Furcht-Konditionierung löste dynamische Expressionsänderungen der Rgs2 mRNA aus. Somit könnte die GPCR Signaldauer während der Gedächtnisbildung durch Rgs2 moduliert werden. Zusammengefasst, führt Rgs2-Defizienz im Mausmodell zu erhöhtem angst- und depressions-ähnlichem Verhalten, veränderter Stress Reaktivität sowie erhöhter kognitiver Leistung. KW - Angst KW - Depression KW - Tiermodell KW - Rgs2 KW - Regulator of G protein signaling 2 KW - Animal model KW - Anxiety KW - Depression KW - Stress KW - Knockout Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152550 ER - TY - THES A1 - Araragi, Naozumi T1 - Electrophysiological investigation of two animal models for emotional disorders - serotonin transporter knockout mice and tryptophan hydroxylase 2 knockout mice T1 - Elektrophysiologische Untersuchung bei zwei Tiermodellen für emotionale Störungen - Serotonin Transporter knockout Mäuse und Tryptophan Hydroxylase 2 knockout Mäuse N2 - Serotonin (5-HT) has been implicated in the regulation of emotions as well as in its pathological states, such as anxiety disorders and depression. Mice with targeted deletion of genes encoding various mediators of central serotonergic neurotransmission therefore provides a powerful tool in understanding contributions of such mediators to homeostatic mechanisms as well as to the development of human emotional disorders. Within this thesis a battery of electrophysiological recordings were conducted in the dorsal raphe nucleus (DRN) and the hippocampus of two murine knockout lines with deficient serotonergic systems. Serotonin transporter knockout mice (5-Htt KO), which lack protein responsible for reuptake of 5-HT from the extracellular space and tryptophan hydroxylase 2 knockout (Tph2 KO) mice, which lack the gene encoding the neuronal 5-HT-synthesising enzyme. First, 5-HT1A receptor-mediated autoinhibition of serotonergic neuron firing in the DRN was assessed using the loose-seal cell-attached configuration. Stimulation of 5-HT1A receptors by a selective agonist, R-8-hydroxy-2-(di-n-propylamino)tetralin (R-8-OH-DPAT), showed a mild sensitisation and a marked desensitisation of these receptors in Tph2 KO and 5-Htt KO mice, respectively. While application of tryptophan, a precursor of 5-HT and a substrate of Tph2, did not cause autoinhibition in Tph2 KO mice due to the lack of endogenously produced 5-HT, data from 5-Htt KO mice as well as heterozygous mice of both KO mice lines demonstrated the presence of autoinhibitory mechanisms as normal as seen in wildtype (WT) controls. When the Tph2-dependent step in the 5-HT synthesis pathway was bypassed by application of 5-hydroxytryptophan (5-HTP), serotonergic neurons of both Tph2 KO and 5-Htt KO mice showed decrease in firing rates at lower concentrations of 5-HTP than in WT controls. Elevated responsiveness of serotonergic neurons from Tph2 KO mice correspond to mild sensitisation of 5-HT1A receptors, while responses from 5-Htt KO mice suggest that excess levels of extracellular 5-HT, created by the lack of 5-Htt, stimulates 5-HT1A receptors strong enough to overcome desensitisation of these receptors. Second, the whole-cell patch clamp recording data from serotonergic neurons in the DRN showed no differences in basic electrophysiological properties between Tph2 KO and WT mice, except lower membrane resistances of neurons from KO mice. Moreover, the whole-cell patch clamp recording from CA1 pyramidal neurons in the hippocampus of 5-Htt KO mice showed increased conductance both at a steady state and at action potential generation. Lastly, magnitude of long-term potentiation (LTP) induced by the Schaffer collateral/commissural pathway stimulation in the ventral hippocampus showed no differences among Tph2 KO, 5-Htt KO, and WT counterparts. Taken together, lack and excess of extracellular 5-HT caused sensitisation and desensitisation of autoinhibitory 5-HT1A receptors, respectively. However, this may not directly translate to the level of autoinhibitory regulation of serotonergic neuron firing when these receptors are stimulated by endogenously synthesised 5-HT. In general, KO mice studied here showed an astonishing level of resilience to genetic manipulations of the central serotonergic system, maintaining overall electrophysiological properties and normal LTP inducibility. This may further suggest existence of as-yet-unknown compensatory mechanisms buffering potential alterations induced by genetic manipulations. N2 - Serotonin (5-HT) ist an der Regulation von der Emotionen, sowie ihrer pathologischen Zustände, wie Angststörungen und Depressionen beteiligt. Mäuse denen, mittels einer zielgerichteteten Deletion von Genen, die verschiedenste Proteine involviert in der zentralen serotonergen Nerotransmission fehlen, dienen daher als ein nützliches Tiermodell, um die Rolle dieser Mediatoren bei Homöostasemechanismen und der Entwicklung emotionaler Störungen beim Menschen zu verstehen. Im Rahmen dieser Thesis wurde eine Batterie von elektrophysiologischen Ableitungen im Hippocampus sowie in der dorsalen Raphe Nucleus (DRN) zweier Knockout-Mauslinien mit einem defizienten serotonergen Systems durchgeführt. Serotonintransporter Knockout-Mäuse (5-Htt KO), denen das Protein zur Wiederaufnahme von 5-HT aus dem extrazellulären Raum fehlt und Tryptophanhydroxylase 2 Knockout-Mäuse (Tph2 KO), denen das Gen für das 5-HT-synthetisierende Enzym im Gehirn fehlt. Zunächst wurde mittels der “loose-seal cell-attached” Aufnahmemethode die Eigenhemmung der serotonergen Neuronen untersucht, die durch 5-HT1A Rezeptoren in der DRN vermittelt wird. Stimulierung der 5-HT1A Rezeptoren durch einen selektiven Agonist, R-8-hydroxy-2-(di-n-propylamino)tetralin (R-8-OH-DPAT), zeigte eine milde Sensibilisierung und eine deutliche Desensibilisierung dieser Rezeptoren in Tph2 KO bzw. in 5-Htt KO Mäusen. Während die Anwendung von Tryptophan, eine Vorstufe von 5-HT und ein Substrat der Tph2, keine Eigenhemmung, aufgrund des Mangels an endogen produziertem 5-HT, in Tph2 KO Mäusen verursachte, wiesen Daten von 5-Htt KO Mäusen sowie von heterozygoten Mäusen beider KO Mauslinien die Existenz der Eigenhemmungsmechanismen wie in den Wildtypen (WT) nach. Wurde der Tph2-abhängige Schritt im 5-HT Syntheseweg durch Anwendung von 5-Hydroxytryptophan (5-HTP) umgangen, zeigten sowohl Tph2 KO als auch 5-Htt KO Mäuse eine Verminderung der serotonergen neuronalen Feuerungsrate bei niedrigeren Konzentrationen von 5-HTP im Vergleich zu den WT. Die erhöhte Reaktionsfähigkeit der serotonergen Neuronen von Tph2 KO Mäusen entsprechen der milden Sensibilisierung der 5-HT1A Rezeptoren. Stattdessen deuten die Reaktionen der serotonergen Neuronen von 5-Htt KO Mäusen darauf hin, dass das überschüssige Niveau von extrazellularem 5-HT, welches durch den Mangel an 5-Htt verursacht wird, 5-HT1A Rezeptoren stark genug stimuliert, um eine Desensibilisierung dieser Rezeptoren zu überwinden. Zweitens zeigten die Daten der whole-cell Patch Clamp Ableitung von serotonergen Neuronen im DRN keine Unterschiede in grundlegenden elektrophysiologischen Eigenschaften zwischen Tph2 KO und WT, außer niedrigen Membranwiderständen in KO Mäusen. Darüber hinaus zeigte die whole-cell Patch Clamp Ableitungen von CA1 Pyramidenzellen im Hippocampus der 5-Htt KO Mäuse eine erhöhte Leitfähigkeit sowohl bei Ruheständen als auch bei Aktionspotentialerzeugungen. Schließlich zeigte die Stärke der Langzeitpotenzierung (long-term potentiation: LTP) durch die Stimulation der Schaffer-Kollateralen/kommissuralen Fasern im ventralen Hippocampus keine Unterschiede zwischen Tph2 KO, 5-Htt KO, und jeweiligen WT. Zusammengefasst verursachten der Mangel und der Überschuss von extrazellularen 5-HT eine Sensibilisierung bzw. Desensibilisierung der autoinhibitorischen 5-HT1A Rezeptoren. Dies kann jedoch nicht direkt in die Regulierung von serotonergen Neuronen Feuerung umgesetzt werden, wenn die 5-HT1A Rezeptoren durch endogen synthetisiertes 5-HT stimuliert werden. Im Allgemeinen zeigten die hier untersuchten KO Mäuse, ein erstaunliches Maß an Widerstandskraft, die die allgemeinen elektrophysiologischen Eigenschaften und die normale LTP Induzierbarkeit trotz genetischer Manipulationen des zentralen serotonergen Systems aufrechterhielt. Weiterhin deutet dies auf die Existenz noch unbekannter Kompensationsmechanismen hin, die diese potentiellen Veränderungen abzudämpfen scheinen. KW - Serotonin KW - Elektrophysiologie KW - Tryptophan hydroxylase 2 KW - Knockout KW - Serotonin transporter KW - Depression KW - Anxiety KW - Knockout KW - Maus Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-83265 ER - TY - THES A1 - Reichert, Nina T1 - The Role of LIN9 in Mouse Development T1 - Die Rolle von LIN9 in der Mausentwicklung N2 - LINC, the human homologue of an evolutionary conserved complex, regulates the transcription of a set of genes essential during the G2/M transition (Osterloh et al., 2007; Schmit et al., 2007). One component of the LINC core module is LIN-9. LIN-9 is essential for the transcriptional activation of LINC target genes and also promotes differentiation in association with pRB (Gagrica et al., 2004). However, nothing is known about its function in vivo. Histological and molecular analysis revealed that Lin9 is ubiquitously expressed throughout embryonic development and in all examined adult organs. Additionally, Lin9 mRNA is expressed in ES cells and blastocysts. Moreover the analogous distribution of the other LINC components suggested that they all function in the same cells and most likely in the same pathway. To deeper investigate the role of LIN9 in cell cycle and differentiation in vivo, a Lin9 gene trap mouse model (GT) was successfully generated and examined. Heterozygouse Lin9GT/+ mice were inconspicuous and develop normally. However, homozygouse knockout embryos were never obtained. The Lin9GT/GT embryos die at peri-implantation, probably due to a defect in the development of the epiblast, which could be shown with in situ hybridization with specific lineage markers. In vitro, the ICM of Lin9-deficient blastocysts did not develop properly. These data suggest that the loss of Lin9 leads to embryonic lethality at peri-implantation, and indicates that LIN9 is required for proper formation of the epiblast. In parallel, the first conditional Lin9 mouse model based on the Cre-loxP technology was generated. The Lin9fl/fl allele can be deleted by Cre-recombinase, in vivo and in vitro. Therefore an inducible system with Lin9fl/fl mice harboring Cre-ERT2 was established. The MEFs generated from these transgenic mice carried a nearly complete knockout upon induction with tamoxifen. Deletion of LIN9 in MEFs had a major impact upon the cell cycle and growth rates. Specifically, they arrested in G2/M phase and stopped to proliferate. Taken together, I was able to generate a lin9 gene trap and a lin9 conditional knockout mouse model. All results obtained so far demonstrate, that Lin9 is an essential gene for embryonic development and cell cycle control. It will be of great interest to further investigate Lin9-deficiency to gain insights into the mechanism of cell cycle control in early embryonic development and cell differentiation. N2 - LINC, das humane Homolog eines evolutionär konservierten Komplexes, reguliert die Transkription von Genen, die essentiell für die G2/M Transition sind (Osterloh et al., 2007; Schmit et al., 2007). Eine Komponente des LINC Komplexes ist LIN-9. LIN-9 ist für die transkriptionelle Aktivierung LINC spezifischer Zielgene essentiell und kann, in Assoziation mit pRB, die Differenzierung humaner Zellen fördern (Gagrica et al., 2004). Bisher ist jedoch nichts über die in vivo Funktion LIN9s bekannt. Histologische und molekulare Analysen der Maus machen deutlich, dass Lin9 während der embryonalen Entwicklung und in allen untersuchten adulten Organen ubiquitär exprimiert wird. Zusätzlich wird Lin9 mRNA in ES Zellen und in Blastocysten exprimiert. Außerdem legt die analoge Verteilung anderer LINC Komponenten nahe, dass sie sehr wahrscheinlich gemeinsam in den gleichen Zellen und Signalwegen agieren. Um die Funktion des LIN9 Proteins im Zellzyklus und der Differenzierung in vivo genauer zu erforschen, wurde ein Lin9 „Gene Trap“ Maus Modell (GT) generiert und untersucht. Heterozygote Lin9GT/+ Mäuse sind unauffällig und entwickeln sich normal. Allerdings wurden keine Lin9 knockout Embryonen erhalten. Lin9GT/GT Embryonen sterben in der peri-Implantationsphase, vermutlich auf Grund eines Entwicklungsdefekts des Epiblasten, was mit in situ Hybridisierung von Abstammungslinien spezifischen Markern gezeigt werden konnte. Die ICM Lin9 defizienter Blastocysten entwickelte sich in vitro nicht richtig. Diese Daten machen deutlich, dass der Verlust von Lin9 zu embryonaler Letalität im Peri-Implantations-stadium führt, und zeigt dass Lin9 für die richtige Ausbildung des Epiblasten benötigt wird. Gleichzeitig wurde das erste konditionelle Lin9 Maus Modell, basierend auf der Cre-loxP Technologie, generiert. Das Lin9fl/fl Allele kann in vivo und in vitro mit der Cre-Recombinase deletiert werden. Deshalb wurde ein induzierbares System mit Lin9fl/fl Mäusen, die zusätzlich Cre-ERT2 tragen, etabliert. Die MEFs dieser transgenen Mäuse trugen nach Induktion mit Tamoxifen einen kompletten Lin9 Knockout. Die Deletion von LIN9 hat dramatische Auswirkung auf den Zellzyklus und die Wachstumsrate der MEFs. Neben der Akkumulation in der G2/M Phase des Zellzyklus kommt es zu einem vollständigen Proliferationsstop. Zusammenfassend war es möglich, ein Lin9 „Gene Trap“ und ein konditionelles Knockout Maus Modell zu generieren. Beide Mausmodelle belegen, dass Lin9 ein essenzielles Gen für die Embryonalentwicklung und die Kontrolle des Zellzyklus ist. Die weitere Erforschung der LIN9 Defizienz wird dazu beitragen, grundlegende Mechanismen der frühen Zellzykluskontrolle und der embryonalen Entwicklung zu verstehen. KW - Zellzyklus KW - Knockout KW - Cell cyle KW - Knockout Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30889 ER -