TY - THES A1 - Fijalkowski, Kajetan Maciej T1 - Electronic Transport in a Magnetic Topological Insulator (V,Bi,Sb)\(_2\)Te\(_3\) T1 - Elektronischer Transport in einem magnetischen topologischen Isolator (V,Bi,Sb)\(_2\)Te\(_3\) N2 - This thesis focuses on investigating magneto-transport properties of a ferromagnetic topological insulator (V,Bi,Sb)2Te3. This material is most famously known for exhibiting the quantum anomalous Hall effect, a novel quantum state of matter that has opened up possibilities for potential applications in quantum metrology as a quantum standard of resistance, as well as for academic investigations into unusual magnetic properties and axion electrodynamics. All of those aspects are investigated in the thesis. N2 - Im Mittelpunkt dieser Arbeit steht die Untersuchung der Magneto-Transporteigenschaften des ferromagnetischen topologischen Isolators (V,Bi,Sb)2Te3. Dieses Material ist vor allem dafür bekannt, dass es den quantenanormalen Hall-Effekt aufweist, einen neuartigen Quantenzustand der Materie, der Möglichkeiten für potenzielle Anwendungen in der Quantenmetrologie als Quantenstandard des Widerstands sowie für wissenschaftliche Untersuchungen zu ungewöhnlichen magnetischen Eigenschaften und der Axion-Elektrodynamik eröffnet hat. All diese Aspekte werden in dieser Arbeit untersucht. KW - Topologischer Isolator KW - Axion KW - Bismutselenide KW - Transportprozess KW - Surface states KW - Magnetic Topological Insulator KW - Quantum anomalous Hall effect Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-282303 ER - TY - THES A1 - Grauer, Stefan T1 - Transport Phenomena in Bi\(_2\)Se\(_3\) and Related Compounds T1 - Transport Phänomene in Bi\(_2\)Se\(_3\) und verwandten Materialien N2 - One of the most significant technological advances in history was driven by the utilization of a new material class: semiconductors. Its most important application being the transistor, which is indispensable in our everyday life. The technological advance in the semiconductor industry, however, is about to slow down. Making transistors ever smaller to increase the performance and trying to reduce and deal with the dissipative heat will soon reach the limits dictated by quantum mechanics with Moore himself, predicting the death of his famous law in the next decade. A possible successor for semiconductor transistors is the recently discovered material class of topological insulators. A material which in its bulk is insulating but has topological protected metallic surface states or edge states at its boundary. Their electrical transport characteristics include forbidden backscattering and spin-momentum-locking with the spin of the electron being perpendicular to its momentum. Topological insulators therefore offer an opportunity for high performance devices with low dissipation, and applications in spintronic where data is stored and processed at the same point. The topological insulator Bi\(_2\)Se\(_3\) and related compounds offer relatively high energy band gaps and a rather simple band structure with a single dirac cone at the gamma point of the Brillouin zone. These characteritics make them ideal candidates to study the topological surface state in electrical transport experiments and explore its physics. N2 - Einer der wichtigsten technologischen Fortschritte der Geschichte wurde von der Nutzung einer neuen Materialklasse getrieben: Halbleitern. Ihre wichtigste Anwendung ist der Transistor, welcher unverzichtbar für unseren Alltag geworden ist. Allerdings ist der technologische Fortschritt in der Halbleiterindustrie dabei sich zu verlangsamen. Versuche die Transistoren immer kleiner zu machen und die Abwärme zu regulieren und zu reduzieren werden bald ihr, durch die Quantenmechanik vorgeschriebenes, Ende erreichen. Moore selbst hat schon das Ende seines berühmten Gesetzes für das nächste Jahrzehnt vorhergesagt. Ein möglicher Nachfolger für Halbleitertransistoren ist die kürzlich entdeckte Materialklasse der topologischen Isolatoren. Ein Material, dass in seinem Volumen isolierend ist, aber an seinen Grenzen durch die Topologie geschützte metallische Oberflächenzustände oder Randkanäle hat. Deren elektrischen Transporteigenschaften umfassen unterdrückte Rückstreuung und Spin-Impuls-Kopplung, wobei der Spin des Elektrons senkrecht zu seinem Impuls ist. Topologische Isolatoren bieten daher die Möglichkeit für hochleistungsfähige Bauteile mit niedrigem Widerstand und für Anwendungen in der Spintronik, in der Daten an der gleichen Stelle gespeichert und prozessiert werden. Der topologische Isolator Bi\(_2\)Se\(_3\) und verwandte Materialien weisen eine relativ hohe Energielücke und eine eher einfache Bandstruktur mit einem einzigen Dirac-Kegel am Gammapunkt der Brilloiun Zone auf. Diese Eigenschaften machen sie zu idealen Kandidaten um den topologischen Oberflächenzustand in elektrischen Transportexperimenten zu untersuchen und seine neue Physik zu entdecken. KW - Topologischer Isolator KW - Bismutselenide KW - Transportprozess KW - QAHE KW - Bi2Se3 KW - Magnetic Topological Insulator KW - Quanten-Hall-Effekt KW - Axion KW - Oberflächenzustand Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157666 SN - 978-3-8439-3481-7 PB - Verlag Dr. Hut GmbH ER - TY - THES A1 - Krause, Stefan T1 - Determination of the transport levels in thin films of organic semiconductors T1 - Bestimmung der Tranportniveaus in organischen Dünnschichten N2 - The approach of using the combination of Ultraviolet (UPS) and Inverse Photoemission (IPS) to determine the transport levels in thin films of organic semiconductors is the scope of this work. For this matter all influences on the peak position and width in Photoelectron Spectroscopy are discussed with a special focus on organic semiconductors. Many of these influences are shown with experimental results of the investigation of diindenoperylene on Ag(111). These findings are applied to inorganic semiconductors silicon in order to establish the use of UPS and IPS on a well-understood system. Finally, the method is used to determine the transport level of several organic semiconductors (PTCDA, Alq3, CuPc, DIP, PBI-H4) and the corresponding exciton binding energies are calculated by comparison to optical absorption data. N2 - Das Ziel dieser Arbeit ist mit Hilfe von Ultravioletter (UPS) und Inverser Photoelektronenspektroskopie (IPS) die Transportniveaus in organischen Dünnschichten zu bestimmen. Um dies zu erreichen, werden zunächst alle Einflüsse auf die Signalposition und -breite in der Photoelektronenspektroskopie mit besonderem Augenmerk auf die organischen Halbleiter diskutiert. Viele dieser Einflüsse werden anhand von experimentelle Daten der Untersuchung von Diindenoperylene auf Ag(111) gezeigt. Basierend auf dieser Diskussion wird die Verwendung von UPS und IPS an dem anorganischen und gut verstandenem Halbleiter Silizium etabliert. Zuletzt wird die nun etablierte Methode auf organische Halbleiter (PTCDA, Alq3, CuPc, DIP, PBI-H4) angewandt und die Lage deren Transportniveaus bestimmt. Durch den Vergleich mit optischen Absorptionsdaten können darüber hinaus auch Exzitonenbindungsenergien in diesen Materialien berechnet werden. KW - Organischer Halbleiter KW - Dünne Schicht KW - Transportprozess KW - Photoelektronenspektroskopie KW - Energielücke KW - Halbleiterschicht KW - Siliciumhalbleiter KW - Metall-Halbleiter-Kontakt KW - Ultraviolett-Photoelektronenspektroskopie KW - Inverse Photoemissions KW - transport gap KW - organic semiconductors KW - UPS KW - IPES KW - exciton binding energy Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40470 ER -