TY - THES A1 - Röding, Sebastian T1 - Coherent Multidimensional Spectroscopy in Molecular Beams and Liquids Using Incoherent Observables T1 - Kohärente Multidimensionale Spektroskopie in Molekularstrahlen und Flüssigkeiten durch inkohärente Observablen N2 - Das Ziel der vorliegenden Arbeit war die Umsetzung einer experimentellen Herangehensweise, welche die kohärente zweidimensionale (2D) Spektroskopie an Proben in unterschiedlichen Aggregatzuständen ermöglicht. Hierzu wurde zunächst ein Aufbau für flüssige Proben realisiert, in welchem die emittierte Fluoreszenz als Messsignal zur Aufnahme der 2D Spektren genutzt wird. Im Gegensatz zu dieser bereits etablierten Methode in der flüssigen Phase stellt die in dieser Arbeit außerdem vorgestellte 2D Spektroskopie an gasförmigen Proben in einem Molekularstrahl einen neuen Ansatz dar. Hierbei werden zum ersten Mal Kationen mittels eines Flugzeitmassenspektrometers als Signal verwendet und somit ionen-spezifische 2D Spektren isolierter Moleküle erhalten. Zusätzlich zu den experimentellen Entwicklungen wurde in dieser Arbeit ein neues Konzept zur Datenerfassung in der 2D Spektroskopie entworfen, welches mit Hilfe einer optimierten Signalabtastung und eines Compressed-Sensing Rekonstruktionsalgorithmus die Aufnahmezeit der Daten deutlich reduziert. Charakteristisch für die in dieser Arbeit eingesetzte Variante der 2D Spektroskopie ist die Verwendung einer phasenkohärenten Sequenz bestehend aus vier Laserimpulsen in einer kollinearen Laserstrahlgeometrie zur Anregung der Probe. Diese Impulssequenz wurde durch einen Laserimpulsformer erzeugt, der durch Änderung der relevanten Laserimpulsparameter mit der Wiederholrate des Lasers eine schnelle Datenerfassung ermöglicht. Die Antwort der Probe auf diese Anregung wurde durch inkohärente Observablen gemessen, welche proportional zur Population des angeregten Zustandes sind, wie zum Beispiel Fluoreszenz oder Ionen. Um aus diesem Signal während der Datenanalyse die gewünschten nichtlinearen Beiträge zu extrahieren, wurde die Messung mit verschiedenen Kombinationen der relativen Phase zwischen den Laserimpulsen wiederholt ("Phase Cycling"). Der Aufbau zur 2D Spektroskopie in flüssiger Phase mit Fluoreszenz-Detektion wurde an Hand von 2D Spektren des Laserfarbstoffes Cresyl Violett charakterisiert. Hierbei wurden Oszillationen in verschiedenen Bereichen des 2D Spektrums beobachtet, welche durch vibronische Kohärenzen hervorgerufen werden und mit früheren Beobachtungen in der Literatur übereinstimmen. Mit dem gleichen Datensatz wurde im nächsten Schritt das neue Konzept zur optimierten Datenerfassung demonstriert. Um ein optimiertes Schema für die Signalabtastung zu finden, wurde ein genetischer Algorithmus implementiert, wobei nur ein Viertel der eigentlichen Datenpunkte zur Messwerterfassung verwendet werden sollte. Dies reduziert die Zeitdauer der Datenerfassung auf ein Viertel der ursprünglichen Messzeit. Die Rekonstruktion des vollständigen Signales erfolgte mit Hilfe einer neuartigen, kompakten Darstellung von 2D Spektren basierend auf der von Neumann Basis. Diese Herangehensweise benötigte im Vergleich zur üblicherweise verwendeten Fourier Basis nur ein Sechstel der Koeffizienten um das Signal vollständig darzustellen und ermöglichte so die erfolgreiche Rekonstruktion der Oszillationen in Cresyl Violett aus einem reduzierten Datensatz. Mit Hilfe der neuartigen kohärenten 2D Spektroskopie an Molekularstrahlen wurden Übergänge von hoch angeregten Rydberg-Zuständen ins ionische Kontinuum in Stickstoffdioxid untersucht. Als dominierender Beitrag stellte sich hierbei der Übergang in auto-ionisierende Zustände heraus. Ein wesentlicher Vorteil der Datenerfassung über ein Flugzeitmassenspektrometer ist die Möglichkeit der gleichzeitigen Aufnahme von 2D Spektren der Edukte und Produkte einer chemischen Reaktion. Dies wurde in Experimenten zur Mehrphotonenionisation gezeigt, in denen deutliche Unterschiede in den 2D Spektren des Stickstoffdioxid-Kations und des Stickstoffmonoxid-Fragmentes sichtbar wurden, welche auf unterschiedliche Antwortfunktionen zurückzuführen sind. Die in dieser Arbeit entwickelten experimentellen Techniken ermöglichen die schnelle Aufnahme von 2D Spektren für Proben in unterschiedlichen Aggregatzuständen und erlauben einen zuverlässigen, direkten Vergleich der Ergebnisse. Sie sind deshalb ein Wegbereiter für zukünftige Untersuchungen der Eigenschaften quantenmechanischer Kohärenzen in photophysikalischen Prozessen oder während photochemischer Reaktionen in unterschiedlichen Aggregatzuständen. N2 - The aim of the present work was to implement an experimental approach that enables coherent two-dimensional (2D) electronic spectroscopy of samples in various states of matter. For samples in the liquid phase, a setup was realized that utilizes the sample fluorescence for the acquisition of 2D spectra. Whereas the liquid-phase approach has been established before, coherent 2D spectroscopy on gaseous samples in a molecular beam as developed in this work is in fact a new method. It employs for the first time cations in a time-of-flight mass spectrometer for signal detection and was used to obtain the first ion-selective 2D spectra of a molecular-beam sample. Additionally, a new acquisition concept was developed in this thesis that significantly decreases measurement times in 2D spectroscopy using optimized sparse sampling and a compressed-sensing reconstruction algorithm. Characteristic for the variant of 2D spectroscopy presented in this work is the usage of a phase-coherent sequence of four laser pulses in a fully collinear geometry for sample excitation. The pulse sequence was generated by a custom-designed pulse shaper that is capable of rapid scanning by changing the pulse parameters such as time delays and phases with the repetition rate of the laser. The sample's response was detected by monitoring incoherent observables that arise from the final-state population, for instance fluorescence or cations. Phase cycling, i.e., signal acquisition with different combinations of the relative phases of the excitation pulses, was applied to extract nonlinear signal contributions from the full signal during data analysis. Liquid-phase 2D fluorescence spectroscopy was established with the laser dye cresyl violet as a sample molecule, confirming coherent oscillations previously observed in literature that are originating from vibronic coherences in specific regions of the 2D spectrum. The data set of this experiment was used subsequently to introduce optimized sparse sampling in 2D spectroscopy. An optimization algorithm was implemented in order to find the best sampling pattern while taking only one quarter of the regular time-domain sampling points, thereby reducing the acquisition time by a factor of four. Signal recovery was based on a new and compact representation of 2D spectra using the von Neumann basis, which required about six times less coefficients than the Fourier basis to retain the relevant information. Successful reconstruction was shown by recovering the coherent oscillations in cresyl violet from a reduced data set. Finally, molecular-beam coherent 2D spectroscopy was introduced with an investigation of ionization pathways in highly-excited nitrogen dioxide, revealing transitions to discrete auto-ionizing states as the dominant contribution to the ion signal. Furthermore, the advantage of the time-of-flight approach to obtain reactant and product 2D spectra simultaneously enabled the observation of distinct differences in the multiphoton-ionization response functions of the nitrogen dioxide cation and the nitrogen oxide ionic fragment. The developed experimental techniques of this work will facilitate fast acquisition of 2D spectra for samples in various states of matter and permit reliable direct comparison of results. Therefore, they pave the way to study the properties of quantum coherences during photophysical processes or photochemical reactions in different environments. KW - Femtosekundenspektroskopie KW - Ultrakurzzeitspektroskopie KW - Pump-Probe Technik KW - Fourier-Spektroskopie KW - Coherent Multidimensional Spectroscopy KW - Time-Resolved Spectroscopy KW - Photochemistry KW - Laser Pulse Shaping KW - Sparse Sampling KW - Kohärente Multidimensionale Spektroskopie KW - Zeitaufgelöste Spektroskopie KW - Photochemie KW - Laserimpulsformung KW - Sparse Sampling Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-156726 ER - TY - THES A1 - Schott, Sebastian T1 - Identification of trihalide photodissociation patterns by global vibrational wavepacket analysis of broadband magic-angle transient absorption data T1 - Identifikation von Trihalidphotodissoziationsmustern mittels globaler Vibrationswellenpaketanalyse von breitbandigen, unter magischem Winkel gemessenen, transienten Absorptionsdaten N2 - The invention of laser pulse shapers allowed for various quantum control experiments, where a chemical reaction is guided by specifically tailored laser pulses. However, despite of the prominent role of the liquid phase in chemistry, no successful attempt for controlling the selectivity of a bond-fission reaction has yet been reported in this state of matter. Promising candidates for such an experiment are C$_{\infty\mathrm{v}}$-symmetric trihalide anions with two different chemical bonds like $\ce{I2Cl-}$, because these molecules notionally offer the most simplest selectivity-control scenario of breaking either the one or the other bond and they are expected to dissociate under ultraviolet (UV) irradiation like it is known for the most-studied trihalide $\ce{I3-}$. In order to investigate in this thesis the possibility that the dissociation reaction of such trihalides branches into two different photofragments, the ultrafast photodissociation dynamics of $\ce{I3-}$, $\ce{Br3-}$, $\ce{IBr2-}$ and $\ce{ICl2-}$ (point group D$_{\infty\mathrm{h}}$) as well as of $\ce{I2Br-}$ and $\ce{I2Cl-}$ (point group C$_{\infty\mathrm{v}}$) in dichloromethane solution were measured with broadband transient absorption spectroscopy in magic-angle configuration. The identification of the reaction pathway(s) relies on vibrational wavepacket oscillations, which survive the dissociation process and therefore carry not only informations about the reactant trihalides but also about the fragment dihalides. These characteristic vibrational wavenumbers were extracted from the measured transient absorption spectra by globally fitting the population dynamics together with the wavepacket dynamics. Until recently, such a combined model function was not available in the well-established fitting tool Glotaran. This made it inevitable to develop a custom implementation of the underlying variable-projection fitting algorithm, for which the computer-algebra software Mathematica was chosen. Mathematica's sophisticated built-in functions allow not only for a high flexibility in constructing arbitrary model functions, but also offer the possibility to automatically calculate the derivative(s) of a model function. This allows the fitting procedure to use the exact Jacobian matrix instead of approximating it with the finite difference method. Against the expectation, only one of the two thinkable photodissociation channels was found for each of the investigated C$_{\infty\mathrm{v}}$ trihalides. Since the photofragments recombine, their absorption signal as well as the reactant ground state bleach recover. This happens in a biexponential manner, which in the case of $\ce{I3-}$ was interpreted by Ruhman and coworkers with the direct formation of a neutral dihalogen fragment $\ce{I2}$ beside the negatively charged dihalide fragment $\ce{I2-}$. In this thesis, such a direct reaction channel was not found and instead the fast component of the biexponential decay is explained with vibrational excess energy mediating the recombination-preceding electron transfer process $\ce{I2- + I -> I2 + I-}$, while the slow component is attributed to cooled-down fragments. In addition to the trihalide experiments, the possibility of a magic-angle configuration for polarization-shaping control experiments was theoretically investigated in this thesis by deriving magic-angle conditions for the third-order electric-dipole response signal of arbitrarily polarized laser pulses. Furthermore, the subtleties of anisotropy signals violating the well-known range of \numrange{-0.2}{0.4} were studied. N2 - Die Erfindung von Laserpulsformern ermöglichte eine Vielzahl von Quantenkontrollexperimenten, bei denen eine chemische Reaktionen mittels maßgeschneiderten Laserpulsen gelenkt wird. Allerdings wurde trotz der bedeutenden Rolle der flüssigen Phase in der Chemie bis heute kein erfolgreicher Versuch publiziert in diesem Aggregatszustand die Selektivität bei der Spaltung chemischer Bindungen zu kontrollieren. Vielversprechende Kandidaten für ein derartiges Experiment sind C$_{\infty\mathrm{v}}$-symmetrische Trihalidanionen mit zwei verschiedenen chemischen Bindungen, wie z.B. $\ce{I2Cl-}$, da diese Moleküle prinzipiell das einfachste Kontrollszenario, in dem entweder die eine oder die andere Bindung gespalten wird, ermöglichen und, wie vom meist untersuchten Trihalid $\ce{I3-}$ bekannt, eine Dissoziationsreaktion unter ultravioletter (UV) Bestrahlung erwartet wird. Um im Rahmen dieser Arbeit zu untersuchen, ob sich die Dissoziationsreaktion solcher Trihalide in zwei verschiedene Photofragmente aufzweigt, wurde die ultraschnelle Photodissoziationdynamik von $\ce{I3-}$, $\ce{Br3-}$, $\ce{IBr2-}$ und $\ce{ICl2-}$ (Punktgruppe D$_{\infty\mathrm{h}}$) sowie von $\ce{I2Br-}$ und $\ce{I2Cl-}$ (Punktgruppe C$_{\infty\mathrm{v}}$) in Dichlormethanlösung mittels breitbandiger transienter Absorptionsspektroskopie in der Magischer-Winkel-Konfiguration gemessen. Die Identifikation der Reaktionspfade stützt sich auf die Oszillation von Schwingungswellenpaketen, die den Dissoziationsprozess überstehen und folglich nicht nur Informationen über die Trihalidedukte sondern auch über die Dihalidprodukte tragen. Diese charakteristischen Schwingungswellenzahlen wurden aus jedem gemessenen transienten Absorptionsspektrum durch einen globalen Fit der Populationsdynamik zusammen mit der Wellenpaketdynamik extrahiert. Bis vor Kurzem war solch eine kombinierte Modellfunktion in dem gängigen Fitwerkzeug Glotaran nicht verfügbar. Dies machte es erforderlich eine eigene Implementation des zugrunde liegenden Fitalgorithmus der variablen Projektionen zu entwickeln, wofür die Computeralgebrasoftware Mathematica gewählt wurde. Mathematicas Funktionsumfang erlaubt nicht nur eine große Flexibilität bei der Konstruktion beliebiger Modellfunktionen, sondern bietet auch die Möglichkeit, die Ableitungen einer Modellfunktion automatisch zu berechnen. Dies erlaubt der Fitprozedur die exakte Jacobi-Matrix zu verwenden, anstatt diese mittels der Finite-Differenzen-Methode zu approximieren. Wider den Erwartungen wurde für jedes der untersuchten C$_{\infty\mathrm{v}}$ Trihalide nur einer der zwei denkbaren Photodissoziationskanäle beobachtet. Da die Photofragmente rekombinieren, klingen deren Absorptionssignal und das Grundzustandsausbleichen des Edukts wieder ab. Dies passiert stets in biexponentieller Form, was im Fall von $\ce{I3-}$ von Ruhman und Kollegen mit der direkten Bildung von neutralen Dihalogenfragmenten $\ce{I2}$ neben den negativ geladenen Dihalidfragmenten $\ce{I2-}$ interpretiert wurde. Im Rahmen dieser Arbeit ließ sich ein solcher direkter Reaktionskanal nicht beobachten. Stattdessen wird die schnelle Komponente des biexponentiellen Zerfalls mit überschüssiger Vibrationsenergie erklärt, die den der Rekombination vorrangehenden Elektrontransferprozess $\ce{I2- + I -> I2 + I-}$ begünstigt, während die langsame Komponente abgekühlten Fragmenten zugeordnet wird. Zusätzlich zu den Tihalidexperimenten wurde durch Herleitung Magischer-Winkel-Bedingungen für Antwortsignale aus elektrischer Dipolwechselwirkung dritter Ordnung mit beliebig polarisierten Laserpulsen theoretisch untersucht, ob eine Magischer-Winkel-Konfiguration für Polarisationsformungs-Kontrollexperimente möglich ist. Weiterhing wurden die Feinheiten anisotroper Signale, die den gut bekannten Bereich von \numrange[range-phrase=~bis~]{-0.2}{0.4} verletzten, untersucht. KW - Femtosekundenspektroskopie KW - Pump-Probe-Technik KW - Ultrakurzzeitspektroskopie KW - Ultraschnelle Photochemie KW - ultrafast photochemistry Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159677 ER -