TY - JOUR A1 - Siverino, Claudia A1 - Fahmy-Garcia, Shorouk A1 - Niklaus, Viktoria A1 - Kops, Nicole A1 - Dolcini, Laura A1 - Misciagna, Massimiliano Maraglino A1 - Ridwan, Yanto A1 - Farrell, Eric A1 - van Osch, Gerjo J. V. M. A1 - Nickel, Joachim T1 - Addition of heparin binding sites strongly increases the bone forming capabilities of BMP9 in vivo JF - Bioactive Materials N2 - Highlights • Despite not being crucial for bone development BMP9 can induce bone growth in vivo. • BMP9 induced bone formation is strongly enhanced by introduced heparin binding sites. • BMP9s bone forming capabilities are triggered by extracellular matrix binding. • Heparin binding BMP9 (BMP9 HB) can improve the current therapies in treating bone fractures. Abstract Bone Morphogenetic proteins (BMPs) like BMP2 and BMP7 have shown great potential in the treatment of severe bone defects. In recent in vitro studies, BMP9 revealed the highest osteogenic potential compared to other BMPs, possibly due to its unique signaling pathways that differs from other osteogenic BMPs. However, in vivo the bone forming capacity of BMP9-adsorbed scaffolds is not superior to BMP2 or BMP7. In silico analysis of the BMP9 protein sequence revealed that BMP9, in contrast to other osteogenic BMPs such as BMP2, completely lacks so-called heparin binding motifs that enable extracellular matrix (ECM) interactions which in general might be essential for the BMPs' osteogenic function. Therefore, we genetically engineered a new BMP9 variant by adding BMP2-derived heparin binding motifs to the N-terminal segment of BMP9′s mature part. The resulting protein (BMP9 HB) showed higher heparin binding affinity than BMP2, similar osteogenic activity in vitro and comparable binding affinities to BMPR-II and ALK1 compared to BMP9. However, remarkable differences were observed when BMP9 HB was adsorbed to collagen scaffolds and implanted subcutaneously in the dorsum of rats, showing a consistent and significant increase in bone volume and density compared to BMP2 and BMP9. Even at 10-fold lower BMP9 HB doses bone tissue formation was observed. This innovative approach of significantly enhancing the osteogenic properties of BMP9 simply by addition of ECM binding motifs, could constitute a valuable replacement to the commonly used BMPs. The possibility to use lower protein doses demonstrates BMP9 HB's high translational potential. KW - bone morphogenetic protein 9 (BMP9) KW - heparin binding sites KW - bone regeneration KW - subcutaneous animal model Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350470 VL - 29 ER - TY - JOUR A1 - Siverino, Claudia A1 - Fahmy-Garcia, Shorouk A1 - Mumcuoglu, Didem A1 - Oberwinkler, Heike A1 - Muehlemann, Markus A1 - Mueller, Thomas A1 - Farrell, Eric A1 - van Osch, Gerjo J. V. M. A1 - Nickel, Joachim T1 - Site-directed immobilization of an engineered bone morphogenetic protein 2 (BMP2) variant to collagen-based microspheres induces bone formation in vivo JF - International Journal of Molecular Sciences N2 - For the treatment of large bone defects, the commonly used technique of autologous bone grafting presents several drawbacks and limitations. With the discovery of the bone-inducing capabilities of bone morphogenetic protein 2 (BMP2), several delivery techniques were developed and translated to clinical applications. Implantation of scaffolds containing adsorbed BMP2 showed promising results. However, off-label use of this protein-scaffold combination caused severe complications due to an uncontrolled release of the growth factor, which has to be applied in supraphysiological doses in order to induce bone formation. Here, we propose an alternative strategy that focuses on the covalent immobilization of an engineered BMP2 variant to biocompatible scaffolds. The new BMP2 variant harbors an artificial amino acid with a specific functional group, allowing a site-directed covalent scaffold functionalization. The introduced artificial amino acid does not alter BMP2′s bioactivity in vitro. When applied in vivo, the covalently coupled BMP2 variant induces the formation of bone tissue characterized by a structurally different morphology compared to that induced by the same scaffold containing ab-/adsorbed wild-type BMP2. Our results clearly show that this innovative technique comprises translational potential for the development of novel osteoinductive materials, improving safety for patients and reducing costs. KW - bone morphogenetic protein 2 (BMP2) KW - bone regeneration KW - covalent coupling KW - subcutaneous animal model Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284572 SN - 1422-0067 VL - 23 IS - 7 ER - TY - JOUR A1 - Wang, Chenglong A1 - Stöckl, Sabine A1 - Li, Shushan A1 - Herrmann, Marietta A1 - Lukas, Christoph A1 - Reinders, Yvonne A1 - Sickmann, Albert A1 - Grässel, Susanne T1 - Effects of extracellular vesicles from osteogenic differentiated human BMSCs on osteogenic and adipogenic differentiation capacity of naïve human BMSCs JF - Cells N2 - Osteoporosis, or steroid-induced osteonecrosis of the hip, is accompanied by increased bone marrow adipogenesis. Such a disorder of adipogenic/osteogenic differentiation, affecting bone-marrow-derived mesenchymal stem cells (BMSCs), contributes to bone loss during aging. Here, we investigated the effects of extracellular vesicles (EVs) isolated from human (h)BMSCs during different stages of osteogenic differentiation on the osteogenic and adipogenic differentiation capacity of naïve (undifferentiated) hBMSCs. We observed that all EV groups increased viability and proliferation capacity and suppressed the apoptosis of naïve hBMSCs. In particular, EVs derived from hBMSCs at late-stage osteogenic differentiation promoted the osteogenic potential of naïve hBMSCs more effectively than EVs derived from naïve hBMSCs (naïve EVs), as indicated by the increased gene expression of COL1A1 and OPN. In contrast, the adipogenic differentiation capacity of naïve hBMSCs was inhibited by treatment with EVs from osteogenic differentiated hBMSCs. Proteomic analysis revealed that osteogenic EVs and naïve EVs contained distinct protein profiles, with pro-osteogenic and anti-adipogenic proteins encapsulated in osteogenic EVs. We speculate that osteogenic EVs could serve as an intercellular communication system between bone- and bone-marrow adipose tissue, for transporting osteogenic factors and thus favoring pro-osteogenic processes. Our data may support the theory of an endocrine circuit with the skeleton functioning as a ductless gland. KW - extracellular vesicles KW - mesenchymal stem cells KW - osteogenic potential KW - osteogenic differentiation KW - adipogenic differentiation KW - ECM remodeling KW - bone regeneration Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286112 SN - 2073-4409 VL - 11 IS - 16 ER - TY - JOUR A1 - Kauffmann, Frederic A1 - Höhne, Christian A1 - Assaf, Alexandre Thomas A1 - Vollkommer, Tobias A1 - Semmusch, Jan A1 - Reitmeier, Aline A1 - Stein, Jamal Michel A1 - Heiland, Max A1 - Smeets, Ralf A1 - Rutkowski, Rico T1 - The influence of local pamidronate application on alveolar dimensional preservation after tooth extraction — an animal experimental study JF - International Journal of Molecular Sciences N2 - The aim of this randomized, controlled animal exploratory trial was to investigate the influence of local application of aminobisphosphonate pamidronate during the socket preservation procedure. Mandibular premolars were extracted in five Göttingen minipigs. Two animals underwent socket preservation using BEGO OSS (n = 8 sockets) and three animals using BEGO OSS + Pamifos (15 mg) (n = 12 sockets). After jaw impression, cast models (baseline, eight weeks postoperative) were digitized using an inLab X5 scanner (Dentsply Sirona) and the generated STL data were superimposed and analyzed with GOM Inspect 2018 (GOM, Braunschweig). After 16 weeks, the lower jaws were prepared and examined using standard histological methods. In the test group (BEGO OSS + pamidronate), buccooral dimensional loss was significantly lower, both vestibulary (−0.80 ± 0.57 mm vs. −1.92 ± 0.63 mm; p = 0.00298) and lingually (−1.36 ± 0.58 mm vs. −2.56 ± 0.65 mm; p = 0.00104) compared with the control group (BEGO OSS). The test group showed a significant difference between vestibular and lingual dimensional loss (p = 0.04036). Histology showed cortical and cancellous bone in the alveolar sockets without signs of local inflammation. Adjuvant application of pamidronate during socket preservation reduces alveolar dimensional loss significantly. Further investigations with regard to dose–response relationships, volume effects, side effects, and a verification of the suitability in combination with other bone substitute materials (BSMs) are necessary. KW - pamidronate KW - socket preservation KW - ridge preservation KW - bone remodeling KW - bone regeneration KW - bisphosphonates Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285173 SN - 1422-0067 VL - 21 IS - 10 ER - TY - THES A1 - Siverino, Claudia T1 - Induction of ectopic bone formation by site directed immobilized BMP2 variants \(in\) \(vivo\) T1 - Induktion ektoper Knochenbildung durch gerichtet immobilisierte BMP2-Varianten \(in\) \(vivo\) N2 - In contrast to common bone fractures, critical size bone defects are unable to self-regenerate and therefore external sources for bone replacement are needed. Currently, the gold standard to treat critical size bone fractures, resulting from diseases, trauma or surgical interventions, is the use of autologous bone transplantation that is associated with several drawbacks such as postoperative pain, increased loss of blood during surgery and extended operative time. The field of bone tissue engineering focuses on the combination of biomaterials and growth factors to circumvent these adverse events and thereby to improve critical size bone defects treatment. To this aim, a promising approach is represented by using a collagen sponge soaked with one of the most powerful osteoinductive proteins, the bone morphogenetic protein 2 (BMP2). After the approval by the Food and Drug Administration (FDA), BMP2 was used to successfully treat several severe bone defects. However, the use of BMP2 delivery systems is associated with severe side effects such as inflammation, swelling, ectopic bone formation outside of the site of implantation and breathing problems if implanted in the area of the cervical spine. The occurrence of severe side effects is related to the supraphysiological amounts of the applied protein at the implantation site. The BMP2 is typically adsorbed into the scaffold and diffuses rapidly after implantation. Therefore, intensive research has been conducted to improve the protein’s retention ability, since a prolonged entrapment of the BMP2 at the implantation site would induce superior bone formation in vivo due to a minimized protein release. By controlling the release from newly designed materials or changing the protein immobilization methods, it seems possible to improve the osteoinductive properties of the resulting BMP2-functionalized scaffolds. The combination of biocompatible and biodegradable scaffolds functionalized with a covalently immobilized protein such as BMP2 would constitute a new alternative in bone tissue engineering by eliminating the aforementioned severe side effects. One of the most common immobilization techniques is represented by the so-called EDC/NHS chemistry. This coupling technique allows covalent biding of the growth factor but in a non-site direct manner, thus producing an implant with uncontrollable and unpredictable osteogenic activities. Therefore, the generation of BMP2 variants harboring functional groups that allow a site-directed immobilization to the scaffold, would enable the production of implants with reproducible osteogenic activity. The new BMP2 variants harbor an artificial amino acid at a specific position of the mature polypeptide sequence. The presence of the unnatural amino acid allows to use particular covalent immobilization techniques in a highly specific and site directed manner. The two selected BMP2 variants, BMP2 E83Plk and BMP2 E83Azide, were expressed in E. coli, renatured and purified by cation exchange chromatography. The final products were intensively analyzed in terms of purity and biological activity in vitro. The two BMP2 variants enabled the application of different coupling techniques and verify the possible options for site directed immobilization to the scaffold. Intensive analyses on the possible side effects caused by the coupling reactions and on the quantification of the coupled protein were performed. Both click chemistry reactions showed high reaction efficacies when the BMP2 variants were coupled to functionalized fluorophores. Quantification by ELISA and scintillation counting of radioactively labeled protein revealed different outcomes. Moreover, the amounts of protein detected for the BMP2 variants coupled to microspheres were similar to that of the wild type protein. Therefore, it was not possible to conclude whether the BMP2 variants were covalently coupled or just adsorbed. BMP2 variants being immobilized to various microspheres induced osteogenic differentiation of C2C12 cells in vitro, but only in those cells that were located in close proximity to the functionalized beads. This selectivity strongly indicates that the protein is for a great portion covalently coupled and not just adsorbed. Moreover, the difference between the covalently coupled BMP2 variants and the adsorbed BMP2 WT was confirmed in vivo. Injection of the BMP2-functionalized microspheres in a rat model induced subcutaneous bone formation. The main aim of the animal experiment was to prove whether covalently coupled BMP2 induces bone formation at significant lower doses if compared to the amount being required if the protein is simply adsorbed. To this aim, several BMP2 concentrations were tested in this animal experiment. The BMP2 variants, being covalently immobilized, were hypothesized to be retained and therefore bio-available at the site of implantation for a prolonged time. However, in the animal experiments, lower doses of either coupled or adsorbed protein were unable to induce any bone formation within the 12 weeks. In contrast, the highest doses induced bone formation that was first detected at week 4. During the 12 weeks of the experiment, an increase in bone density and a steady state bone volume was observed. These results were obtained only for the covalently coupled BMP2 E83Azide but not for BMP2 E83Plk that did not induce bone formation in any condition. The negative outcome after application of BMP2 E83Plk suggested that the coupling reaction might have provoked changes in the protein structure that extremely influenced its osteogenic capabilities in vivo. However, the histological examination of the different ossicles induced either by BMP2 WT or BMP2 E83Azide, revealed clear morphological differences. BMP2 WT induced a bone shell-like structure, while the covalently coupled protein induced uniform bone formation also throughout the inner part. The differences between the two newly formed bones can be clearly associated with the different protein delivery mechanisms. Thus, the developed functionalized microspheres constitute a new interesting strategy that needs further investigations in order to be able to be used as replacement of the currently used BMP2 WT loaded medical devices. N2 - Knochendefekte kritischer Größe sind im Vergleich zu normalen Knochenfrakturen nicht in der Lage selbst zu heilen. Daher werden zusätzlich Knochenersatzmaterialien zu deren Heilung benötigt. Der derzeitige Goldstandard in der Behandlung dieser Defekte, die durch Krankheiten, Traumata oder durch chirurgische Eingriffe hervorgerufen werden können, ist Transplantation autologen Knochens, was jedoch mit einigen Nachteilen verbunden ist. Als Alternative können neuartige biokompatible Materialien mit intrinsischem osteogenen Potential verwendet werden. Solche Materialien können Wachstumsfaktoren beinhalten welche aktiv die Heilung des beschädigten Knochens fördern. Ein vielversprechender Ansatz um dieses Ziel zu erreichen, ist der Einsatz eines Kollagenträgers, welcher mit einem der stärksten osteoinduktiven Proteine, dem Bone Morphogenic Protein 2 (BMP2) dotiert ist. Nach der Genehmigung durch die Food and Drug Administration (FDA), wurde BMP2 erfolgreich bei der Behandlung von schwerwiegenden Knochendefekten eingesetzt. Daher wird es als bisher beste Alternative zu autologen Transplantaten sowie als beste Möglichkeit zur Anregung der Knochenneubildung angesehen. Nichtdestotrotz geht der Einsatz von mit BMP2 beladenen Trägersystemen mit Nebenwirkungen, wie Entzündungen Schwellungen, Knochenwucherungen abseits des behandelten Defektes sowie Atembeschwerden bei Behandlungen im Bereich der Halswirbelsäule einher. Die Nebenwirkungen werden durch die supraphysiologische Menge an Protein, mit der die Trägerstruktur beladen wird hervorgerufen. Jedoch ist solch eine Menge an Protein nötig, da die Abgabe des Proteins an der Transplantationsstelle sehr schnell abläuft. Deshalb konzentriert sich die Forschung auf die Verbesserung der Freisetzungskinetik, da ein längerer Verbleib des BMP2 an der Implantationsstelle sowie eine verringerte Freisetzung des Proteins eine bessere Knochenbildung in vivo herbeiführt. Die Freisetzungskinetik kann durch die Eigenschaften neu entwickelter Materialien selbst oder durch alternative Methoden der Kopplung des Proteins an die Trägerstruktur verändert werden. Die Kombination aus biokompatiblen sowie biodegradierbaren Trägerstrukturen, an die über kovalente Bindungen BMP2 gebunden wird, stellt eine vielversprechende Alternative dar, welche die vorgenannten Nebenwirkungen bei der Knochenregeneration eliminiert. Die am häufigsten eingesetzte Methode zur kovalenten Anbindung von Proteinen an Trägerstukturen erfolgt über die sogenannte EDC/NHS-Chemie. Diese Technik erlaubt die allerdings nur eine ungerichtete Anbindung wodurch die standardisierte Reproduktion eines möglichen Medizinproduktes erschwert wird. Als Resultat entstehen sehr wahrscheinlich Implantate mit unvorhersehbaren osteogenen Eigenschaften. Die Herstellung von BMP2-Varianten, welche gerichtet an Trägerstrukturen gekoppelt werden können, ermöglicht die Herstellung von Implantaten mit reproduzierbarer osteogener Aktivität. Alle hier vorgestellte Varianten beinhalten eine artifizielle Aminosäure an einer bestimmten Stelle in der Polypeptidsequenz. Die künstliche Aminosäure ermöglicht den Einsatz spezieller Kopplungschemien für kovalente Bindungen, welche dadurch per Definition spezifisch und gerichtet sind. Für weiterführende Experimente wurden die folgende BMP2-Varianten ausgewählt: BMP2 E83Plk und BMP2 E83Azide. Diese wurden durch Expression in E. coli gewonnen, renaturiert und mittels Ionenchromatographie aufgereinigt. Die gewonnenen Produkte wurden hinsichtlich ihrer Reinheit und biologischen Aktivität in vitro untersucht. Beide BMP2 Varianten ermöglichen den Einsatz verschiedener Kopplungstechniken an geeignete Trägerstrukturen. Analysen hinsichtlich möglicher Nebenwirkungen aufgrund der Kupplungsreaktion sowie die genaue Quantifizierung der gekoppelten Proteine auf den Mikrosphären wurden durchgeführt. Beide Kopplungsstrategien zeigten eine hohe Effizienz wobei für die Quantifizierung der Proteinmengen mittels ELISA und Szintillationszählung unterschiedliche Werte gemessen wurden. Des Weiteren war die gemessene Proteinmenge von an Mikrosphären gekoppelten BMP2 Varianten in einem ähnlichen Bereich, wie die bei der ungekoppelten BMP2 WT Kontrolle gemessen wurden. Daher war es nicht möglich zu bestimmen, inwieweit die verwendeten BMP2-Varianten kovalent gebunden oder lediglich adsorbiert waren. Die BMP2 Varianten, die anhand der verwendeten Kopplungschemie in kovalent gebundener Form vorliegenden sollten, induzierten unabhängig vom jeweils verwendeten Material der Sphären die osteogene Differenzierung von C2C12 Zellen die in unmittelbarem Kontakt zu diesen Sphären standen. Im Falle von BMP2 WT beinhaltenden Sphären wurde auch Zelldifferenzierung in Distanz zu den einzelnen Sphären beobachten, was auf Diffusionsprozesse hindeutet. Da dies im Falle der kovalent gekoppelten BMP-2 Varianten nicht beobachtet werden konnte zeigt, dass das Protein hier zum Großteil kovalent gebunden vorliegt und nicht nur adsorbiert wird. Unterschiede zwischen den kovalent gebundenen BMP2 Varianten und dem adsorbierten Wildtyp zeigten sich auch in den Tierexperimenten. Mikrosphären, welche mit BMP2 WT oder einem der beiden BMP2 Varianten beladenen waren, wurden einer Ratte subkutan injiziert, was zu einer ektopen Knochenbildung führte. Das Ziel des Tierversuches war, zu überprüfen, ob geringere Dosen an kovalent gebundenem BMP2, verglichen mit der hohen benötigten Menge an adsorbiertem Protein diese Knochenneubildung induzieren kann. Dabei wurden verschiedene BMP2 Konzentrationen getestet. Die Hypothese war, dass die kovalent gebundenen BMP2 Varianten zurückgehalten werden beziehungsweise langsamer freigesetzt werden und daher über einen längeren Zeitraum an der Implantationsstelle wirksam sind. Allerdings konnte im Tierversuch weder durch niedrig dosiertes (< 10 μg) kovalent gebundenes noch durch adsorbiertes Protein innerhalb von 12 Wochen ektope Knochenbildung induziert werden. Dagegen konnte mit der höchsten Dosis bereits nach 4 Wochen Knochenbildung nachgewiesen werden. Während des zwölfwöchigen Experiments konnte ein Anstieg der Knochendichte und ein Steady State des Knochenvolumens beobachtet werden. Dies traf jedoch nur für das kovalent gebundene BMP2 E83Azide zu, jedoch nicht für das BMP2 E83Plk, welches bei allen Dosen kein Knochenwachstum hervorrufen konnte. Das negative Ergebnis nach der Gabe von BMP2 E83Plk deutet darauf hin, dass die hier verwendete Kopplungschemie möglicherweise eine Veränderung der Proteinstruktur bewirkt und dadurch die biologische Aktivität des Proteins verloren geht. Allerdings zeigten histologische Untersuchungen der gebildeten Knochenstrukturen, welche durch BMP2 WT oder durch BMP2 E83Azide hervorgerufen wurden, deutliche morphologische Unterschiede. BMP2 WT erzeugt eine solide schalenförmige Strukturen während das kovalent gebundene Protein ein eher gleichförmiges Knochenwachstum induziert, auch im Inneren der gebildeten Knochenstruktur, welches hier Reste implantierten Mikrosphären umschließt. Dies konnte nicht in den durch BMP2 WT induzierten Knochenstrukturen nachgewiesen werden. Der Unterschied zwischen den zwei Formen neu gebildeten Knochens kann mit den verschiedenen Freisetzungsmechanismen in Verbindung gebracht werden. Daher stellt die Entwicklung funktionalisierter Mikrosphären eine neue interessante Strategie dar, welche weiterführende Untersuchungen benötigt, um die aktuell genutzten BMP2 WT beinhaltenden Medizinprodukte zu ersetzen. KW - Bone morphogenetic protein 2 KW - ectopic bone formation KW - site directed immobilization KW - bone regeneration KW - in vivo study Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169359 ER - TY - THES A1 - Hafen, Bettina T1 - Physical contact between mesenchymal stem cells and endothelial precursors induces distinct signatures with relevance to tissue regeneration and engineering T1 - Physischer Kontakt zwischen mesenchymalen Stammzellen und endothelialen Vorläuferzellen indiziert eine bestimmte Signatur mit Relevanz für die Geweberegeneration und Tissue Engineering N2 - The goal of the project VascuBone is to develop a tool box for bone regeneration, which on one hand fulfills basic requirements (e.g. biocompatibility, properties of the surface, strength of the biomaterials) and on the other hand is freely combinable with what is needed in the respective patient's situation. The tool box will include a variation of biocompatible biomaterials and cell types, FDA-approved growth factors, material modification technologies, simulation and analytical tools like molecular imaging-based in vivo diagnostics, which can be combined for the specific medical need. This tool box will be used to develop translational approaches for regenerative therapies of different types of bone defects. This project receives funding from the European Union's Seventh Framework Program (VascuBone 2010). The present study is embedded into this EU project. The intention of this study is to assess the changes of the global gene expression patterns of endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) after direct cell-cell contact as well as the influence of conditioned medium gained from MSCs on EPCs and vice versa. EPCs play an important role in postnatal vasculogenesis. An intact blood vessel system is crucial for all tissues, including bone. Latest findings in the field of bone fracture healing and repair by the use of tissue engineering constructs seeded with MSCs raised the idea of combining MSCs and EPCs to enhance vascularization and therefore support survival of the newly built bone tissue. RNA samples from both experimental set ups were hybridized on Affymetrix GeneChips® HG-U133 Plus 2.0 and analyzed by microarray technology. Bioinformatic analysis was applied to the microarray data and verified by RT-PCR. This study gives detailed information on how EPCs and MSCs communicate with each other and therefore gives insights into the signaling pathways of the musculoskeletal system. These insights will be the base for further functional studies on protein level for the purpose of tissue regeneration. A better understanding of the cell communication of MSCs and EPCs and subsequently the targeting of relevant factors opens a variety of new opportunities, especially in the field of tissue engineering. The second part of the present work was to develop an ELISA (enzyme-linked immunosorbent assay) for a target protein from the lists of differentially expressed genes revealed by the microarray analysis. This project was in cooperation with Immundiagnostik AG, Bensheim, Germany. The development of the ELISA aimed to have an in vitro diagnostic tool to monitor e.g. the quality of cell seeded tissue engineering constructs. The target protein chosen from the lists was klotho. Klotho seemed to be a very promising candidate since it is described in the literature as anti-aging protein. Furthermore, studies with klotho knock-out mice showed that these animals suffered from several age-related diseases e.g. osteoporosis and atherosclerosis. As a co-receptor for FGF23, klotho plays an important role in bone metabolism. The present study will be the first one to show that klotho is up-regulated in EPCs after direct cell-cell contact with MSCs. The development of an assay with a high sensitivity on one hand and the capacity to differentiate between secreted and shedded klotho on the other hand will allow further functional studies of this protein and offers a new opportunity in medical diagnostics especially in the field of metabolic bone disease. N2 - Das Ziel des durch die europäische Union geförderten Projekts VascuBone ist die Entwicklung einer tool box zur Knochenregeneration, die einerseits sämtliche Grundanforderungen erfüllt, beispielsweise an die Biokompatibilität, Oberflächenbeschaffenheit und Robustheit der Biomaterialien, und andererseits frei an den Bedarf der individuellen Patientensituation angepasst werden kann. Sie beinhaltet unterschiedlichste biokompatible Materialien und Zelltypen, FDA-zugelassene Wachstumsfaktoren, materialmodifizierende Technologien sowie Simulations- und analytische Werkzeuge, wie die auf molekularer Bildgebung basierende in-vivo-Diagnostik (MRI und PET/CT), die für den spezifischen medizinischen Bedarf kombiniert werden können. Die tool box wird für die Entwicklung translationaler Ansätze in der regenerativen Medizin für unterschiedliche Arten von Knochendefekten verwendet (VascuBone 2010). Eingebettet in dieses EU-Projekt sollten in der vorliegenden Arbeit die molekularen Grundlagen und Änderungen der globalen Genexpressionsmuster von endothelialen Vorläuferzellen (EPCs) und mesenchymalen Stammzellen (MSCs) nach direktem Zell-Zell-Kontakt sowie nach Gabe von konditioniertem Medium untersucht werden. EPCs spielen eine wichtige Rolle in der postnatalen Vaskulogenese. Ein intaktes Blutgefäßsystem ist überlebensnotwendig für alle Gewebe, einschließlich Knochen. Neueste Erkenntnisse in der Knochenheilung und -regeneration durch die Nutzung von Tissue-Engineering-Konstrukten, die mit MSCs besiedelt wurden, förderten die Idee, MSCs und EPCs zu kombinieren, um die Vaskularisierung – und somit das Überleben – des neu gebildeten Knochengewebes zu begünstigen. Die RNA-Proben aus beiden Versuchsansätzen wurden für die Microarray-Analysen auf Affymetrix GeneChips® HG-U133 Plus 2.0 hybridisiert. Die Array-Daten wurden bioinformatisch ausgewertet und mittels RT-PCR verifiziert. Die vorliegende Arbeit gibt detailliert Aufschluss darüber, wie MSCs und EPCs miteinander kommunizieren, und erlaubt somit wichtige Einblicke in Signalwege des muskuloskelettalen Systems. Dies wiederum ermöglicht weitere funktionelle Studien auf Proteinebene zum Zwecke der Geweberegeneration. Das bessere Verständnis der Zellkommunikation zwischen MSCs und EPCs und somit die gezielte Adressierung von relevanten Faktoren eröffnet völlig neue Möglichkeiten in der klinischen Anwendung, insbesondere im Bereich Tissue Engineering. Im zweiten Teil dieser Arbeit sollte in Kooperation mit der Firma Immundiagnostik AG, Bensheim, ein ELISA (enzyme-linked immunosorbent assay) aufgebaut werden. Ziel war es, für ein geeignetes Protein aus den zu erwartenden Listen regulierter Gene ein in-vitro-diagnostisches Nachweisverfahren zu entwickeln, das ggf. später als Qualitätsnachweis für erfolgreich besiedelte Tissue-Engineering-Konstrukte herangezogen werden könnte. Als geeigneter Kandidat wurde Klotho ausgewählt. Klotho gilt als anti-aging-Protein, da Klotho-knock-out-Mäuse alle alterstypischen Erkrankungen wie Osteoporose oder Arteriosklerose zeigen. Als Co-Rezeptor für FGF23 spielt Klotho außerdem eine wichtige Rolle im Knochenstoffwechsel. Diese Studie ist die erste, die zeigt, dass in EPCs nach direktem Zell-Zell-Kontakt mit MSCs Klotho hochreguliert wird. Die Entwicklung eines sensitiven und differenzierten Nachweises von sezerniertem Klotho sowie der von der Membran proteolytisch abgespaltenen Form von Klotho, eröffnet völlig neue Möglichkeiten in der klinischen Diagnostik, insbesondere im Bereich der Knochenstoffwechselerkrankungen KW - MSC KW - EPC KW - bone regeneration KW - microarray KW - Vorläuferzelle KW - Endothel KW - Mesenchymzelle KW - Knochenregeneration Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119417 ER -