TY - JOUR A1 - Wilhelms, Benedikt A1 - Broscheit, Jens A1 - Shityakov, Sergey T1 - Chemical analysis and molecular modelling of cyclodextrin-formulated propofol and its sodium salt to improve drug solubility, stability and pharmacokinetics (cytogenotoxicity) JF - Pharmaceuticals N2 - Propofol is a widely used general anesthetic in clinical practice, but its use is limited by its water-insoluble nature and associated pharmacokinetic and pharmacodynamic limitations. Therefore, researchers have been searching for alternative formulations to lipid emulsion to address the remaining side effects. In this study, novel formulations for propofol and its sodium salt Na-propofolat were designed and tested using the amphiphilic cyclodextrin (CD) derivative hydroxypropyl-β-cyclodextrin (HPβCD). The study found that spectroscopic and calorimetric measurements suggested complex formation between propofol/Na-propofolate and HPβCD, which was confirmed by the absence of an evaporation peak and different glass transition temperatures. Moreover, the formulated compounds showed no cytotoxicity and genotoxicity compared to the reference. The molecular modeling simulations based on molecular docking predicted a higher affinity for propofol/HPβCD than for Na-propofolate/HPβCD, as the former complex was more stable. This finding was further confirmed by high-performance liquid chromatography. In conclusion, the CD-based formulations of propofol and its sodium salt may be a promising option and a plausible alternative to conventional lipid emulsions. KW - propofol KW - anaesthesiology KW - HPβCD KW - \(^1\)H-NMR spectroscopy KW - calorimetry KW - molecular modelling KW - cytotoxicity KW - genotoxicity Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313705 SN - 1424-8247 VL - 16 IS - 5 ER - TY - JOUR A1 - Eltamany, Enas E. A1 - Abdelmohsen, Usama Ramadan A1 - Hal, Dina M. A1 - Ibrahim, Amany K. A1 - Hassanean, Hashim A. A1 - Abdelhameed, Reda F. A. A1 - Temraz, Tarek A. A1 - Hajjar, Dina A1 - Makki, Arwa A. A1 - Hendawy, Omnia Magdy A1 - AboulMagd, Asmaa M. A1 - Youssif, Khayrya A. A1 - Bringmann, Gerhard A1 - Ahmed, Safwat A. T1 - Holospiniferoside: A New Antitumor Cerebroside from The Red Sea Cucumber Holothuria spinifera: In Vitro and In Silico Studies JF - Molecules N2 - Chemical investigation of the methanolic extract of the Red Sea cucumber Holothuria spinifera led to the isolation of a new cerebroside, holospiniferoside (1), together with thymidine (2), methyl-α-d-glucopyranoside (3), a new triacylglycerol (4), and cholesterol (5). Their chemical structures were established by NMR and mass spectrometric analysis, including gas chromatography–mass spectrometry (GC–MS) and high-resolution mass spectrometry (HRMS). All the isolated compounds are reported in this species for the first time. Moreover, compound 1 exhibited promising in vitro antiproliferative effect on the human breast cancer cell line (MCF-7) with IC\(_{50}\) of 20.6 µM compared to the IC50 of 15.3 µM for the drug cisplatin. To predict the possible mechanism underlying the cytotoxicity of compound 1, a docking study was performed to elucidate its binding interactions with the active site of the protein Mdm2–p53. Compound 1 displayed an apoptotic activity via strong interaction with the active site of the target protein. This study highlights the importance of marine natural products in the design of new anticancer agents. KW - Holothuria spinifera KW - HRMS KW - cerebrosides KW - molecular docking KW - cytotoxicity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234058 SN - 1420-3049 VL - 26 IS - 6 ER - TY - JOUR A1 - Stelzner, Kathrin A1 - Boyny, Aziza A1 - Hertlein, Tobias A1 - Sroka, Aneta A1 - Moldovan, Adriana A1 - Paprotka, Kerstin A1 - Kessie, David A1 - Mehling, Helene A1 - Potempa, Jan A1 - Ohlsen, Knut A1 - Fraunholz, Martin J. A1 - Rudel, Thomas T1 - Intracellular Staphylococcus aureus employs the cysteine protease staphopain A to induce host cell death in epithelial cells JF - PLoS Pathogens N2 - Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection. Author summary Staphylococcus aureus is an antibiotic-resistant pathogen that emerges in hospital and community settings and can cause a variety of diseases ranging from skin abscesses to lung inflammation and blood poisoning. The bacterium can asymptomatically colonize the upper respiratory tract and skin of humans and take advantage of opportune conditions, like immunodeficiency or breached barriers, to cause infection. Although S. aureus was not regarded as intracellular bacterium, it can be internalized by human cells and subsequently exit the host cells by induction of cell death, which is considered to cause tissue destruction and spread of infection. The bacterial virulence factors and underlying molecular mechanisms involved in the intracellular lifestyle of S. aureus remain largely unknown. We identified a bacterial cysteine protease to contribute to host cell death of epithelial cells mediated by intracellular S. aureus. Staphopain A induced killing of the host cell after translocation of the pathogen into the cell cytosol, while bacterial proliferation was not required. Further, the protease enhanced survival of the pathogen during lung infection. These findings reveal a novel, intracellular role for the bacterial protease staphopain A. KW - Staphylococcus aureus KW - Staphylococcal infection KW - host cells KW - HeLa cells KW - cytotoxicity KW - intracellular pathogens KW - apoptosis KW - epithelial cells Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-263908 VL - 17 IS - 9 ER - TY - JOUR A1 - Abd El-Aziz, Asmaa M. A1 - El-Maghraby, Azza A1 - Ewald, Andrea A1 - Kandil, Sherif H. T1 - In-vitro cytotoxicity study: cell viability and cell morphology of carbon nanofibrous scaffold/hydroxyapatite nanocomposites JF - Molecules N2 - Electrospun carbon nanofibers (CNFs), which were modified with hydroxyapatite, were fabricated to be used as a substrate for bone cell proliferation. The CNFs were derived from electrospun polyacrylonitrile (PAN) nanofibers after two steps of heat treatment: stabilization and carbonization. Carbon nanofibrous (CNF)/hydroxyapatite (HA) nanocomposites were prepared by two different methods; one of them being modification during electrospinning (CNF-8HA) and the second method being hydrothermal modification after carbonization (CNF-8HA; hydrothermally) to be used as a platform for bone tissue engineering. The biological investigations were performed using in-vitro cell counting, WST cell viability and cell morphology after three and seven days. L929 mouse fibroblasts were found to be more viable on the hydrothermally-modified CNF scaffolds than on the unmodified CNF scaffolds. The biological characterizations of the synthesized CNF/HA nanofibrous composites indicated higher capability of bone regeneration. KW - HA modifiedCNF membranes KW - cytotoxicity KW - WST test KW - cell counting KW - cell viability KW - cell morphology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234037 SN - 1420-3049 VL - 26 IS - 6 ER - TY - JOUR A1 - Zahoranová, Anna A1 - Luxenhofer, Robert T1 - Poly(2‐oxazoline)‐ and Poly(2‐oxazine)‐Based Self‐Assemblies, Polyplexes, and Drug Nanoformulations—An Update JF - Advanced Healthcare Materials N2 - For many decades, poly(2‐oxazoline)s and poly(2‐oxazine)s, two closely related families of polymers, have led the life of a rather obscure research topic with only a few research groups world‐wide working with them. This has changed in the last five to ten years, presumably triggered significantly by very promising clinical trials of the first poly(2‐oxazoline)‐based drug conjugate. The huge chemical and structural toolbox poly(2‐oxazoline)s and poly(2‐oxazine)s has been extended very significantly in the last few years, but their potential still remains largely untapped. Here, specifically, the developments in macromolecular self‐assemblies and non‐covalent drug delivery systems such as polyplexes and drug nanoformulations based on poly(2‐oxazoline)s and poly(2‐oxazine)s are reviewed. This highly dynamic field benefits particularly from the extensive synthetic toolbox poly(2‐oxazoline)s and poly(2‐oxazine)s offer and also may have the largest potential for a further development. It is expected that the research dynamics will remain high in the next few years, particularly as more about the safety and therapeutic potential of poly(2‐oxazoline)s and poly(2‐oxazine)s is learned. KW - block copolymers KW - colloids KW - cytotoxicity KW - drug delivery KW - micelles KW - microphase separation KW - thermogelling Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-225833 VL - 10 IS - 6 ER - TY - JOUR A1 - Abdelhameed, Reda F. A. A1 - Eltamany, Enas E. A1 - Hal, Dina M. A1 - Ibrahim, Amany K. A1 - AboulMagd, Asmaa M. A1 - Al-Warhi, Tarfah A1 - Youssif, Khayrya A. A1 - Abd El-kader, Adel M. A1 - Hassanean, Hashim A. A1 - Fayez, Shaimaa A1 - Bringmann, Gerhard A1 - Ahmed, Safwat A. A1 - Abdelmohsen, Usama Ramadan T1 - New cytotoxic cerebrosides from the Red Sea cucumber Holothuria spinifera supported by in-silico studies JF - Marine Drugs N2 - Bioactivity-guided fractionation of a methanolic extract of the Red Sea cucumber Holothuria spinifera and LC-HRESIMS-assisted dereplication resulted in the isolation of four compounds, three new cerebrosides, spiniferosides A (1), B (2), and C (3), and cholesterol sulfate (4). The chemical structures of the isolated compounds were established on the basis of their 1D NMR and HRMS spectral data. Metabolic profiling of the H. spinifera extract indicated the presence of diverse secondary metabolites, mostly hydroxy fatty acids, diterpenes, triterpenes, and cerebrosides. The isolated compounds were tested for their in vitro cytotoxicities against the breast adenocarcinoma MCF-7 cell line. Compounds 1, 2, 3, and 4 displayed promising cytotoxic activities against MCF-7 cells, with IC\(_{50}\) values of 13.83, 8.13, 8.27, and 35.56 µM, respectively, compared to that of the standard drug doxorubicin (IC\(_{50}\) 8.64 µM). Additionally, docking studies were performed for compounds 1, 2, 3, and 4 to elucidate their binding interactions with the active site of the SET protein, an inhibitor of protein phosphatase 2A (PP2A), which could explain their cytotoxic activity. This study highlights the important role of these metabolites in the defense mechanism of the sea cucumber against fouling organisms and the potential uses of these active molecules in the design of new anticancer agents. KW - LC-HRESIMS KW - Holothuria spinifera KW - cerebrosides KW - molecular docking KW - cytotoxicity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211089 SN - 1660-3397 VL - 18 IS - 8 ER - TY - JOUR A1 - Grebinyk, Anna A1 - Prylutska, Svitlana A1 - Buchelnikov, Anatoliy A1 - Tverdokhleb, Nina A1 - Grebinyk, Sergii A1 - Evstigneev, Maxim A1 - Matyshevska, Olga A1 - Cherepanov, Vsevolod A1 - Prylutskyy, Yuriy A1 - Yashchuk, Valeriy A1 - Naumovets, Anton A1 - Ritter, Uwe A1 - Dandekar, Thomas A1 - Frohme, Marcus T1 - C60 fullerene as an effective nanoplatform of alkaloid Berberine delivery into leukemic cells JF - Pharmaceutics N2 - A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle—C60 fullerene (C60)—for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV–Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C\(_{60}\) binding in an aqueous solution. Complexation with C\(_{60}\) was found to promote Ber intracellular uptake. By increasing C\(_{60}\) concentration, the C\(_{60}\)-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C\(_{60}\)-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C\(_{60}\) improved its in vitro efficiency against cancer cells. KW - C60 fullerene KW - Berberine KW - noncovalent nanocomplex KW - UV–Vis KW - DLS and AFM measurements KW - drug release KW - leukemic cells KW - uptake KW - cytotoxicity KW - apoptosis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193216 SN - 1999-4923 VL - 11 IS - 11 ER - TY - JOUR A1 - Grebinyk, Anna A1 - Prylutska, Svitlana A1 - Grebinyk, Sergii A1 - Prylutskyy, Yuriy A1 - Ritter, Uwe A1 - Matyshevska, Olga A1 - Dandekar, Thomas A1 - Frohme, Marcus T1 - Complexation with C\(_{60}\) fullerene increases doxorubicin efficiency against leukemic cells in vitro JF - Nanoscale Research Letters N2 - Conventional anticancer chemotherapy is limited because of severe side effects as well as a quickly evolving multidrug resistance of the tumor cells. To address this problem, we have explored a C\(_{60}\) fullerene-based nanosized system as a carrier for anticancer drugs for an optimized drug delivery to leukemic cells.Here, we studied the physicochemical properties and anticancer activity of C\(_{60}\) fullerene noncovalent complexes with the commonly used anticancer drug doxorubicin. C\(_{60}\)-Doxorubicin complexes in a ratio 1:1 and 2:1 were characterized with UV/Vis spectrometry, dynamic light scattering, and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The obtained analytical data indicated that the 140-nm complexes were stable and could be used for biological applications. In leukemic cell lines (CCRF-CEM, Jurkat, THP1 and Molt-16), the nanocomplexes revealed 3.5 higher cytotoxic potential in comparison with the free drug in a range of nanomolar concentrations. Also, the intracellular drug's level evidenced C\(_{60}\) fullerene considerable nanocarrier function.The results of this study indicated that C\(_{60}\) fullerene-based delivery nanocomplexes had a potential value for optimization of doxorubicin efficiency against leukemic cells. KW - C-60 fullerene KW - doxorubicin KW - noncovalent complex KW - leukemic cells KW - cytotoxicity KW - accumulation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228257 VL - 14 IS - 61 ER - TY - JOUR A1 - Scherzad, Agmal A1 - Meyer, Till A1 - Ickrath, Pascal A1 - Gehrke, Thomas Eckhart A1 - Bregenzer, Maximillian A1 - Hagen, Rudolf A1 - Dembski, Sofia A1 - Hackenberg, Stephan T1 - Cultivation of hMSCs in human plasma prevents the cytotoxic and genotoxic potential of ZnO-NP in vitro JF - Applied Sciences N2 - Zinc oxide nanoparticles (ZnO-NPs) are commonly used for industrial applications. Consequently, there is increasing exposure of humans to them. The in vitro analysis of cytotoxicity and genotoxicity is commonly performed under standard cell culture conditions. Thus, the question arises of how the results of genotoxicity and cytotoxicity experiments would alter if human plasma was used instead of cell culture medium containing of fetal calf serum (FCS). Human mesenchymal stem cells (hMSCs) were cultured in human plasma and exposed to ZnO-NPs. A cultivation in expansion medium made of DMEM consisting 10% FCS (DMEM-EM) served as control. Genotoxic and cytotoxic effects were evaluated with the comet and MTT assay, respectively. hMSC differentiation capacity and ZnO-NP disposition were evaluated by histology and transmission electron microscopy (TEM). The protein concentration and the amount of soluble Zn2+ were measured. The cultivation of hMSCs in plasma leads to an attenuation of genotoxic and cytotoxic effects of ZnO-NPs compared to control. The differentiation capacity of hMSCs was not altered. The TEM showed ZnO-NP persistence in cytoplasm in both groups. The concentrations of protein and Zn2+ were higher in plasma than in DMEM-EM. In conclusion, the cultivation of hMSCs in plasma compared to DMEM-EM leads to an attenuation of cytotoxicity and genotoxicity in vitro. KW - ZnO-NP KW - mesenchymal stem cells KW - genotoxicity KW - cytotoxicity KW - human plasma Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193063 SN - 2076-3417 VL - 9 IS - 23 ER - TY - JOUR A1 - Ickrath, Pascal A1 - Wagner, Martin A1 - Scherzad, Agmal A1 - Gehrke, Thomas A1 - Burghartz, Marc A1 - Hagen, Rudolf A1 - Radeloff, Katrin A1 - Kleinsasser, Norbert A1 - Hackenberg, Stephan T1 - Time-Dependent Toxic and Genotoxic Effects of Zinc Oxide Nanoparticles after Long-Term and Repetitive Exposure to Human Mesenchymal Stem Cells JF - International Journal of Environmental Research and Public Health N2 - Zinc oxide nanoparticles (ZnO-NP) are widely spread in consumer products. Data about the toxicological characteristics of ZnO-NP is still under controversial discussion. The human skin is the most important organ concerning ZnO-NP exposure. Intact skin was demonstrated to be a sufficient barrier against NPs; however, defect skin may allow NP contact to proliferating cells. Within these cells, stem cells are the most important toxicological target for NPs. The aim of this study was to evaluate the genotoxic and cytotoxic effects of ZnO-NP at low-dose concentrations after long-term and repetitive exposure to human mesenchymal stem cells (hMSC). Cytotoxic effects of ZnO-NP were measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Furthermore, genotoxicity was evaluated by the comet assay. For long-term observation over 6 weeks, transmission electron microscopy (TEM) was applied. The results of the study indicated cytotoxic effects of ZnO-NP beginning at high concentrations of 50 μg/mL and genotoxic effects in hMSC exposed to 1 and 10 μg/mL ZnO-NP. Repetitive exposure enhanced cyto- but not genotoxicity. Intracellular NP accumulation was observed up to 6 weeks. The results suggest cytotoxic and genotoxic potential of ZnO-NP. Even low doses of ZnO-NP may induce toxic effects as a result of repetitive exposure and long-term cellular accumulation. This data should be considered before using ZnO-NP on damaged skin. KW - zinc oxide KW - ZnO KW - nanoparticles KW - cytotoxicity KW - toxicity KW - genotoxicity Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169932 VL - 14 IS - 12 ER -