TY - JOUR A1 - Brumberg, Joachim A1 - Kuzkina, Anastasia A1 - Lapa, Constantin A1 - Mammadova, Sona A1 - Buck, Andreas A1 - Volkmann, Jens A1 - Sommer, Claudia A1 - Isaias, Ioannis U. A1 - Doppler, Kathrin T1 - Dermal and cardiac autonomic fiber involvement in Parkinson's disease and multiple system atrophy JF - Neurobiology of Disease N2 - Pathological aggregates of alpha-synuclein in peripheral dermal nerve fibers can be detected in patients with idiopathic Parkinson's disease and multiple system atrophy. This study combines skin biopsy staining for p-alpha-synuclein depositions and radionuclide imaging of the heart with [\(^{123}\)I]-metaiodobenzylguanidine to explore peripheral denervation in both diseases. To this purpose, 42 patients with a clinical diagnosis of Parkinson's disease or multiple system atrophy were enrolled. All patients underwent a standardized clinical workup including neurological evaluation, neurography, and blood samples. Skin biopsies were obtained from the distal and proximal leg, back, and neck for immunofluorescence double labeling with anti-p-alpha-synuclein and anti-PGP9.5. All patients underwent myocardial [\(^{123}\)I]-metaiodobenzylguanidine scintigraphy. Dermal p-alpha-synuclein was observed in 47.6% of Parkinson's disease patients and was mainly found in autonomic structures. 81.0% of multiple system atrophy patients had deposits with most of cases in somatosensory fibers. The [\(^{123}\)I]-metaiodobenzylguanidine heart-to-mediastinum ratio was lower in Parkinson's disease than in multiple system atrophy patients (1.94 +/- 0.63 vs. 2.91 +/- 0.96; p < 0.0001). Irrespective of the diagnosis, uptake was lower in patients with than without p-alpha-synuclein in autonomic structures (1.42 +/- 0.51 vs. 2.74 +/- 0.83; p < 0.0001). Rare cases of Parkinson's disease with p-alpha-synuclein in somatosensory fibers and multiple system atrophy patients with deposits in autonomic structures or both fiber types presented with clinically overlapping features. In conclusion, this study suggests that alpha-synuclein contributes to peripheral neurodegeneration and mediates the impairment of cardiac sympathetic neurons in patients with synucleinopathies. Furthermore, it indicates that Parkinson's disease and multiple system atrophy share pathophysiologic mechanisms of peripheral nervous system dysfunction with a clinical overlap. KW - peripheral nervous system KW - Parkinson's disease KW - skin biopsy KW - MIBG scintigraphy KW - multiple system atrophy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260061 VL - 153 ER - TY - JOUR A1 - Giordano, Rosaria A1 - Canesi, Margherita A1 - Isalberti, Maurizio A1 - Isaias, Ioannis Ugo A1 - Montemurro, Tiziana A1 - Viganò, Mariele A1 - Montelatici, Elisa A1 - Boldrin, Valentina A1 - Benti, Riccardo A1 - Cortelezzi, Agostino A1 - Fracchiolla, Nicola A1 - Lazzari, Lorenza A1 - Pezzoli, Gianni T1 - Autologous mesenchymal stem cell therapy for progressive supranuclear palsy: translation into a phase I controlled, randomized clinical study JF - Journal of Translational Medicine N2 - Background: Progressive Supranuclear Palsy (PSP) is a sporadic and progressive neurodegenerative disease which belongs to the family of tauopathies and involves both cortical and subcortical structures. No effective therapy is to date available. Methods/design: Autologous bone marrow (BM) mesenchymal stem cells (MSC) from patients affected by different type of parkinsonisms have shown their ability to improve the dopaminergic function in preclinical and clinical models. It is also possible to isolate and expand MSC from the BM of PSP patients with the same proliferation rate and immuphenotypic profile as MSC from healthy donors. BM MSC can be efficiently delivered to the affected brain regions of PSP patients where they can exert their beneficial effects through different mechanisms including the secretion of neurotrophic factors. Here we propose a randomized, placebo-controlled, double-blind phase I clinical trial in patients affected by PSP with MSC delivered via intra-arterial injection. Discussion: To our knowledge, this is the first clinical trial to be applied in a no-option parkinsonism that aims to test the safety and to exploit the properties of autologous mesenchymal stem cells in reducing disease progression. The study has been designed to test the safety of this " first-in-man" approach and to preliminarily explore its efficacy by excluding the placebo effect. Trial registration: NCT01824121 KW - Parkinson's disease KW - cellular therapy KW - deep brain-stimulation KW - bone-marrow KW - transplantation KW - receptor tyrosine kinase KW - Richardson-Olszewski-Syndrome KW - multiple system atrophy KW - advanced therapy medicinal products KW - mesenchymal stem and stromal cells KW - progressive supranuclear palsy KW - treatment options KW - adrenal medulla KW - stromal cells Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117594 VL - 12 IS - 14 ER - TY - JOUR A1 - Molochnikov, Leonid A1 - Rabey, Jose M. A1 - Dobronevsky, Evgenya A1 - Bonuccelli, Ubaldo A1 - Ceravolo, Roberto A1 - Frosini, Daniela A1 - Grünblatt, Edna A1 - Riederer, Peter A1 - Jacob, Christian A1 - Aharon-Peretz, Judith A1 - Bashenko, Yulia A1 - Youdim, Moussa B. H. A1 - Mandel, Silvia A. T1 - A molecular signature in blood identifies early Parkinson's disease JF - Molecular Neurodegeneration N2 - Background: The search for biomarkers in Parkinson's disease (PD) is crucial to identify the disease early and monitor the effectiveness of neuroprotective therapies. We aim to assess whether a gene signature could be detected in blood from early/mild PD patients that could support the diagnosis of early PD, focusing on genes found particularly altered in the substantia nigra of sporadic PD. Results: The transcriptional expression of seven selected genes was examined in blood samples from 62 early stage PD patients and 64 healthy age-matched controls. Stepwise multivariate logistic regression analysis identified five genes as optimal predictors of PD: p19 S-phase kinase-associated protein 1A (odds ratio [OR] 0.73; 95% confidence interval [CI] 0.60-0.90), huntingtin interacting protein-2 (OR 1.32; CI 1.08-1.61), aldehyde dehydrogenase family 1 subfamily A1 (OR 0.86; 95% CI 0.75-0.99), 19 S proteasomal protein PSMC4 (OR 0.73; 95% CI 0.60-0.89) and heat shock 70-kDa protein 8 (OR 1.39; 95% CI 1.14-1.70). At a 0.5 cut-off the gene panel yielded a sensitivity and specificity in detecting PD of 90.3 and 89.1 respectively and the area under the receiving operating curve (ROC AUC) was 0.96. The performance of the five-gene classifier on the de novo PD individuals alone composing the early PD cohort (n = 38), resulted in a similar ROC with an AUC of 0.95, indicating the stability of the model and also, that patient medication had no significant effect on the predictive probability (PP) of the classifier for PD risk. The predictive ability of the model was validated in an independent cohort of 30 patients at advanced stage of PD, classifying correctly all cases as PD (100% sensitivity). Notably, the nominal average value of the PP for PD (0.95 (SD = 0.09)) in this cohort was higher than that of the early PD group (0.83 (SD = 0.22)), suggesting a potential for the model to assess disease severity. Lastly, the gene panel fully discriminated between PD and Alzheimer's disease (n = 29). Conclusions: The findings provide evidence on the ability of a five-gene panel to diagnose early/mild PD, with a possible diagnostic value for detection of asymptomatic PD before overt expression of the disorder. KW - cerebrospina KW - magnetic-resonance-spectroscopy KW - protein KW - biomarkers KW - E3 ubiquitin ligase KW - SCF KW - SKP1 KW - heat shock protein Hsc-70 KW - early diagnosis KW - fluid KW - alpha-synuclein KW - dehydrogenases KW - Alzheimer's disease KW - sporadic Parkinson's disease KW - blood biomarker KW - CSF KW - multiple system atrophy KW - clinical diagnosis KW - substantia nigra KW - gene expression Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134508 VL - 7 IS - 26 ER -