TY - JOUR A1 - Stolte, Matthias A1 - Hecht, Reinhard A1 - Xie, Zengqi A1 - Liu, Linlin A1 - Kaufmann, Christina A1 - Kudzus, Astrid A1 - Schmidt, David A1 - Würthner, Frank T1 - Crystal Engineering of 1D Exciton Systems Composed of Single‐ and Double‐Stranded Perylene Bisimide J‐Aggregates JF - Advanced Optical Materials N2 - Single crystals of three at bay area tetraphenoxy‐substituted perylene bisimide dyes are grown by vacuum sublimation. X‐ray analysis reveals the self‐assembly of these highly twisted perylene bisimides (PBIs) in the solid state via imide–imide hydrogen bonding into hydrogen‐bonded PBI chains. The crystallographic insights disclose that the conformation and sterical congestion imparted by the phenoxy substituents can be controlled by ortho‐substituents. Accordingly, whilst sterically less demanding methyl and isopropyl substituents afford double‐stranded PBI chains of complementary P and M atropo‐enantiomers, single hydrogen‐bonded chains of homochiral PBIs are observed for the sterically more demanding ortho‐phenyl substituents. Investigation of the absorption and fluorescence properties of microcrystals and thin films of these PBIs allow for an unambiguous interpretation of these exciton systems. Thus, the J‐aggregates of the double‐stranded crystals exhibit a much larger (negative) exciton coupling than the single‐stranded one, which in contrast has the higher solid‐state fluorescence quantum yield. KW - fluorescence KW - J‐aggregates KW - perylene bisimides KW - reabsorption KW - single crystal structure Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218221 VL - 8 IS - 18 ER - TY - JOUR A1 - Schmidt, David A1 - Stolte, Matthias A1 - Süß, Jasmin A1 - Liess, Dr. Andreas A1 - Stepanenko, Vladimir A1 - Würthner, Frank T1 - Protein-like enwrapped perylene bisimide chromophore as bright microcrystalline emitter material JF - Angewandte Chemie International Edition N2 - Strongly emissive solid‐state materials are mandatory components for many emerging optoelectronic technologies, but fluorescence is often quenched in the solid state owing to strong intermolecular interactions. The design of new organic pigments, which retain their optical properties despite their high tendency to crystallize, could overcome such limitations. Herein, we show a new material with monomer‐like absorption and emission profiles as well as fluorescence quantum yields over 90 % in its crystalline solid state. The material was synthesized by attaching two bulky tris(4‐tert‐butylphenyl)phenoxy substituents at the perylene bisimide bay positions. These substituents direct a packing arrangement with full enwrapping of the chromophore and unidirectional chromophore alignment within the crystal lattice to afford optical properties that resemble those of their natural pigment counterparts, in which chromophores are rigidly embedded in protein environments. KW - cristal engeneering KW - dyes KW - flourescence quantum yield KW - perylene bisimides KW - solid-state emitters Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204809 VL - 58 IS - 38 ER -