TY - JOUR A1 - Rutkowski, Andrzej J. A1 - Erhard, Florian A1 - L'Hernault, Anne A1 - Bonfert, Thomas A1 - Schilhabel, Markus A1 - Crump, Colin A1 - Rosenstiel, Philip A1 - Efstathiou, Stacey A1 - Zimmer, Ralf A1 - Friedel, Caroline C. A1 - Dölken, Lars T1 - Widespread disruption of host transcription termination in HSV-1 infection JF - Nature Communications N2 - Herpes simplex virus 1 (HSV-1) is an important human pathogen and a paradigm for virus-induced host shut-off. Here we show that global changes in transcription and RNA processing and their impact on translation can be analysed in a single experimental setting by applying 4sU-tagging of newly transcribed RNA and ribosome profiling to lytic HSV-1 infection. Unexpectedly, we find that HSV-1 triggers the disruption of transcription termination of cellular, but not viral, genes. This results in extensive transcription for tens of thousands of nucleotides beyond poly(A) sites and into downstream genes, leading to novel intergenic splicing between exons of neighbouring cellular genes. As a consequence, hundreds of cellular genes seem to be transcriptionally induced but are not translated. In contrast to previous reports, we show that HSV-1 does not inhibit co-transcriptional splicing. Our approach thus substantially advances our understanding of HSV-1 biology and establishes HSV-1 as a model system for studying transcription termination. KW - herpes simplex virus KW - RNA polymerase II KW - gene expression KW - alpha-globin KW - motif discovery KW - regulatory protein ICP27 KW - poly(A) site usage KW - pre-messenger RNA KW - splicing inhibition KW - type 1 ICP27 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148643 VL - 6 IS - 7126 ER - TY - JOUR A1 - Hickey, Scott F. A1 - Sridhar, Malathy A1 - Westermann, Alexander J. A1 - Qin, Qian A1 - Vijayendra, Pooja A1 - Liou, Geoffrey A1 - Hammond, Ming C. T1 - Transgene regulation in plants by alternative splicing of a suicide exon JF - Nucleic Acids Research N2 - Compared to transcriptional activation, other mechanisms of gene regulation have not been widely exploited for the control of transgenes. One barrier to the general use and application of alternative splicing is that splicing-regulated transgenes have not been shown to be reliably and simply designed. Here, we demonstrate that a cassette bearing a suicide exon can be inserted into a variety of open reading frames (ORFs), generating transgenes whose expression is activated by exon skipping in response to a specific protein inducer. The surprisingly minimal sequence requirements for the maintenance of splicing fidelity and regulation indicate that this splicing cassette can be used to regulate any ORF containing one of the amino acids Glu, Gln or Lys. Furthermore, a single copy of the splicing cassette was optimized by rational design to confer robust gene activation with no background expression in plants. Thus, conditional splicing has the potential to be generally useful for transgene regulation. KW - kingdom KW - pre-messenger RNA KW - gene expression KW - elements KW - decay KW - arabidopsis KW - eukaryotes KW - mechanisms Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134724 VL - 40 IS - 10 ER -