TY - JOUR A1 - Ramírez-Rodríguez, Gloria Belén A1 - Pereira, Ana Rita A1 - Herrmann, Marietta A1 - Hansmann, Jan A1 - Delgado-López, José Manuel A1 - Sprio, Simone A1 - Tampieri, Anna A1 - Sandri, Monica T1 - Biomimetic mineralization promotes viability and differentiation of human mesenchymal stem cells in a perfusion bioreactor JF - International Journal of Molecular Sciences N2 - In bone tissue engineering, the design of 3D systems capable of recreating composition, architecture and micromechanical environment of the native extracellular matrix (ECM) is still a challenge. While perfusion bioreactors have been proposed as potential tool to apply biomechanical stimuli, its use has been limited to a low number of biomaterials. In this work, we propose the culture of human mesenchymal stem cells (hMSC) in biomimetic mineralized recombinant collagen scaffolds with a perfusion bioreactor to simultaneously provide biochemical and biophysical cues guiding stem cell fate. The scaffolds were fabricated by mineralization of recombinant collagen in the presence of magnesium (RCP.MgAp). The organic matrix was homogeneously mineralized with apatite nanocrystals, similar in composition to those found in bone. X-Ray microtomography images revealed isotropic porous structure with optimum porosity for cell ingrowth. In fact, an optimal cell repopulation through the entire scaffolds was obtained after 1 day of dynamic seeding in the bioreactor. Remarkably, RCP.MgAp scaffolds exhibited higher cell viability and a clear trend of up-regulation of osteogenic genes than control (non-mineralized) scaffolds. Results demonstrate the potential of the combination of biomimetic mineralization of recombinant collagen in presence of magnesium and dynamic culture of hMSC as a promising strategy to closely mimic bone ECM. KW - scaffold KW - perfusion bioreactor KW - collagen KW - apatite nanoparticles KW - magnesium KW - human mesenchymal stem cell KW - osteogenesis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285804 SN - 1422-0067 VL - 22 IS - 3 ER - TY - JOUR A1 - Kowalewicz, Katharina A1 - Vorndran, Elke A1 - Feichtner, Franziska A1 - Waselau, Anja-Christina A1 - Brueckner, Manuel A1 - Meyer-Lindenberg, Andrea T1 - In-vivo degradation behavior and osseointegration of 3D powder-printed calcium magnesium phosphate cement scaffolds JF - Materials N2 - Calcium magnesium phosphate cements (CMPCs) are promising bone substitutes and experience great interest in research. Therefore, in-vivo degradation behavior, osseointegration and biocompatibility of three-dimensional (3D) powder-printed CMPC scaffolds were investigated in the present study. The materials Mg225 (Ca\(_{0.75}\)Mg\(_{2.25}\)(PO\(_4\))\(_2\)) and Mg225d (Mg225 treated with diammonium hydrogen phosphate (DAHP)) were implanted as cylindrical scaffolds (h = 5 mm, Ø = 3.8 mm) in both lateral femoral condyles in rabbits and compared with tricalcium phosphate (TCP). Treatment with DAHP results in the precipitation of struvite, thus reducing pore size and overall porosity and increasing pressure stability. Over 6 weeks, the scaffolds were evaluated clinically, radiologically, with Micro-Computed Tomography (µCT) and histological examinations. All scaffolds showed excellent biocompatibility. X-ray and in-vivo µCT examinations showed a volume decrease and increasing osseointegration over time. Structure loss and volume decrease were most evident in Mg225. Histologically, all scaffolds degraded centripetally and were completely traversed by new bone, in which the remaining scaffold material was embedded. While after 6 weeks, Mg225d and TCP were still visible as a network, only individual particles of Mg225 were present. Based on these results, Mg225 and Mg225d appear to be promising bone substitutes for various loading situations that should be investigated further. KW - farringtonite KW - stanfieldite KW - 3D powder printing KW - scaffold KW - biocompatibility KW - degradable bone substitutes KW - osseointegration KW - in-vivo Micro-Computed Tomography Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228929 SN - 1996-1944 VL - 14 IS - 4 ER -