TY - JOUR A1 - Brosch, Philippa K. A1 - Korsa, Tessa A1 - Taban, Danush A1 - Eiring, Patrick A1 - Hildebrand, Sascha A1 - Neubauer, Julia A1 - Zimmermann, Heiko A1 - Sauer, Markus A1 - Shirakashi, Ryo A1 - Djuzenova, Cholpon S. A1 - Sisario, Dmitri A1 - Sukhorukov, Vladimir L. T1 - Glucose and inositol transporters, SLC5A1 and SLC5A3, in glioblastoma cell migration JF - Cancers N2 - (1) Background: The recurrence of glioblastoma multiforme (GBM) is mainly due to invasion of the surrounding brain tissue, where organic solutes, including glucose and inositol, are abundant. Invasive cell migration has been linked to the aberrant expression of transmembrane solute-linked carriers (SLC). Here, we explore the role of glucose (SLC5A1) and inositol transporters (SLC5A3) in GBM cell migration. (2) Methods: Using immunofluorescence microscopy, we visualized the subcellular localization of SLC5A1 and SLC5A3 in two highly motile human GBM cell lines. We also employed wound-healing assays to examine the effect of SLC inhibition on GBM cell migration and examined the chemotactic potential of inositol. (3) Results: While GBM cell migration was significantly increased by extracellular inositol and glucose, it was strongly impaired by SLC transporter inhibition. In the GBM cell monolayers, both SLCs were exclusively detected in the migrating cells at the monolayer edge. In single GBM cells, both transporters were primarily localized at the leading edge of the lamellipodium. Interestingly, in GBM cells migrating via blebbing, SLC5A1 and SLC5A3 were predominantly detected in nascent and mature blebs, respectively. (4) Conclusion: We provide several lines of evidence for the involvement of SLC5A1 and SLC5A3 in GBM cell migration, thereby complementing the migration-associated transportome. Our findings suggest that SLC inhibition is a promising approach to GBM treatment. KW - volume regulation KW - transportome KW - phlorizin Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297498 SN - 2072-6694 VL - 14 IS - 23 ER - TY - JOUR A1 - Bittner, Stefan A1 - Bobak, Nicole A1 - Hofmann, Majella-Sophie A1 - Schuhmann, Michael K. A1 - Ruck, Tobias A1 - Göbel, Kerstin A1 - Brück, Wolfgang A1 - Wiendl, Heinz A1 - Meuth, Sven G. T1 - Murine K\(_{2P}\)5.1 Deficiency Has No Impact on Autoimmune Neuroinflammation due to Compensatory K\(_{2P}\)3.1-and K\(_{V}\)1.3-Dependent Mechanisms JF - International Journal of Molecular Sciences N2 - Lymphocytes express potassium channels that regulate physiological cell functions, such as activation, proliferation and migration. Expression levels of K\(_{2P}\)5.1(TASK2; KCNK5) channels belonging to the family of two-pore domain potassium channels have previously been correlated to the activity of autoreactive T lymphocytes in patients with multiple sclerosis and rheumatoid arthritis. In humans, K\(_{2P}\)5.1 channels are upregulated upon T cell stimulation and influence T cell effector functions. However, a further clinical translation of targeting K\(_{2P}\)5.1 is currently hampered by a lack of highly selective inhibitors, making it necessary to evaluate the impact of KCNK5 in established preclinical animal disease models. We here demonstrate that K\(_{2P}\)5.1 knockout (K\(_{2P}\)5.1\(^{-/-}\) mice display no significant alterations concerning T cell cytokine production, proliferation rates, surface marker molecules or signaling pathways. In an experimental model of autoimmune neuroinflammation, K\(_{2P}\)5.1\(^{-/-}\) mice show a comparable disease course to wild-type animals and no major changes in the peripheral immune system or CNS compartment. A compensatory upregulation of the potassium channels K\(_{2P}\)3.1 and K\(_{V}\)1.3 seems to counterbalance the deletion of K\(_{2P}\)5.1. As an alternative model mimicking autoimmune neuroinflammation, experimental autoimmune encephalomyelitis in the common marmoset has been proposed, especially for testing the efficacy of new potential drugs. Initial experiments show that K\(_{2P}\)5.1 is functionally expressed on marmoset T lymphocytes, opening up the possibility for assessing future K\(_{2P}\)5.1-targeting drugs. KW - domain potassium channels KW - volume regulation KW - multiple-sclerosis KW - potassium channels KW - multiple sclerosis KW - ion channels KW - K+ channel KW - T lymphocytes KW - up-regulation KW - TASK2 KW - K2P channels KW - B cells KW - ph KW - K\(_{2P}\)5.1 KW - KCNK5 KW - autoimmune neuroinflammation KW - EAE Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151454 VL - 16 SP - 16880 EP - 16896 ER -