TY - JOUR A1 - Sarukhanyan, Edita A1 - Shanmugam, Tipack Ayothyapattanam A1 - Dandekar, Thomas T1 - In silico studies reveal Peramivir and Zanamivir as an optimal drug treatment even if H7N9 avian type influenza virus acquires further resistance JF - Molecules N2 - An epidemic of avian type H7N9 influenza virus, which took place in China in 2013, was enhanced by a naturally occurring R294K mutation resistant against Oseltamivir at the catalytic site of the neuraminidase. To cope with such drug-resistant neuraminidase mutations, we applied the molecular docking technique to evaluate the fitness of the available drugs such as Oseltamivir, Zanamivir, Peramivir, Laninamivir, L-Arginine and Benserazide hydrochloride concerning the N9 enzyme with single (R294K, R119K, R372K), double (R119_294K, R119_372K, R294_372K) and triple (R119_294_372K) mutations in the pocket. We found that the drugs Peramivir and Zanamivir score best amongst the studied compounds, demonstrating their high binding potential towards the pockets with the considered mutations. Despite the fact that mutations changed the shape of the pocket and reduced the binding strength for all drugs, Peramivir was the only drug that formed interactions with the key residues at positions 119, 294 and 372 in the pocket of the triple N9 mutant, while Zanamivir demonstrated the lowest RMSD value (0.7 Å) with respect to the reference structure. KW - H7N9 influenza virus KW - neuraminidase KW - mutation KW - binding pocket KW - molecular docking Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288240 SN - 1420-3049 VL - 27 IS - 18 ER - TY - JOUR A1 - Eltamany, Enas E. A1 - Abdelmohsen, Usama Ramadan A1 - Hal, Dina M. A1 - Ibrahim, Amany K. A1 - Hassanean, Hashim A. A1 - Abdelhameed, Reda F. A. A1 - Temraz, Tarek A. A1 - Hajjar, Dina A1 - Makki, Arwa A. A1 - Hendawy, Omnia Magdy A1 - AboulMagd, Asmaa M. A1 - Youssif, Khayrya A. A1 - Bringmann, Gerhard A1 - Ahmed, Safwat A. T1 - Holospiniferoside: A New Antitumor Cerebroside from The Red Sea Cucumber Holothuria spinifera: In Vitro and In Silico Studies JF - Molecules N2 - Chemical investigation of the methanolic extract of the Red Sea cucumber Holothuria spinifera led to the isolation of a new cerebroside, holospiniferoside (1), together with thymidine (2), methyl-α-d-glucopyranoside (3), a new triacylglycerol (4), and cholesterol (5). Their chemical structures were established by NMR and mass spectrometric analysis, including gas chromatography–mass spectrometry (GC–MS) and high-resolution mass spectrometry (HRMS). All the isolated compounds are reported in this species for the first time. Moreover, compound 1 exhibited promising in vitro antiproliferative effect on the human breast cancer cell line (MCF-7) with IC\(_{50}\) of 20.6 µM compared to the IC50 of 15.3 µM for the drug cisplatin. To predict the possible mechanism underlying the cytotoxicity of compound 1, a docking study was performed to elucidate its binding interactions with the active site of the protein Mdm2–p53. Compound 1 displayed an apoptotic activity via strong interaction with the active site of the target protein. This study highlights the importance of marine natural products in the design of new anticancer agents. KW - Holothuria spinifera KW - HRMS KW - cerebrosides KW - molecular docking KW - cytotoxicity Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234058 SN - 1420-3049 VL - 26 IS - 6 ER - TY - JOUR A1 - Isaacs, Darren A1 - Mikasi, Sello Given A1 - Obasa, Adetayo Emmanuel A1 - Ikomey, George Mondinde A1 - Shityakov, Sergey A1 - Cloete, Ruben A1 - Jacobs, Graeme Brendon T1 - Structural comparison of diverse HIV-1 subtypes using molecular modelling and docking analyses of integrase inhibitors JF - Viruses N2 - The process of viral integration into the host genome is an essential step of the HIV-1 life cycle. The viral integrase (IN) enzyme catalyzes integration. IN is an ideal therapeutic enzyme targeted by several drugs; raltegravir (RAL), elvitegravir (EVG), dolutegravir (DTG), and bictegravir (BIC) having been approved by the USA Food and Drug Administration (FDA). Due to high HIV-1 diversity, it is not well understood how specific naturally occurring polymorphisms (NOPs) in IN may affect the structure/function and binding affinity of integrase strand transfer inhibitors (INSTIs). We applied computational methods of molecular modelling and docking to analyze the effect of NOPs on the full-length IN structure and INSTI binding. We identified 13 NOPs within the Cameroonian-derived CRF02_AG IN sequences and further identified 17 NOPs within HIV-1C South African sequences. The NOPs in the IN structures did not show any differences in INSTI binding affinity. However, linear regression analysis revealed a positive correlation between the Ki and EC50 values for DTG and BIC as strong inhibitors of HIV-1 IN subtypes. All INSTIs are clinically effective against diverse HIV-1 strains from INSTI treatment-naïve populations. This study supports the use of second-generation INSTIs such as DTG and BIC as part of first-line combination antiretroviral therapy (cART) regimens, due to a stronger genetic barrier to the emergence of drug resistance. KW - integrase KW - naturally occurring polymorphisms KW - HIV-1 KW - molecular modelling KW - molecular docking KW - diversity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211170 SN - 1999-4915 VL - 12 IS - 9 ER - TY - JOUR A1 - Zahran, Eman Maher A1 - Albohy, Amgad A1 - Khalil, Amira A1 - Ibrahim, Alyaa Hatem A1 - Ahmed, Heba Ali A1 - El-Hossary, Ebaa M. A1 - Bringmann, Gerhard A1 - Abdelmohsen, Usama Ramadan T1 - Bioactivity Potential of Marine Natural Products from Scleractinia-Associated Microbes and In Silico Anti-SARS-COV-2 Evaluation JF - Marine Drugs N2 - Marine organisms and their associated microbes are rich in diverse chemical leads. With the development of marine biotechnology, a considerable number of research activities are focused on marine bacteria and fungi-derived bioactive compounds. Marine bacteria and fungi are ranked on the top of the hierarchy of all organisms, as they are responsible for producing a wide range of bioactive secondary metabolites with possible pharmaceutical applications. Thus, they have the potential to provide future drugs against challenging diseases, such as cancer, a range of viral diseases, malaria, and inflammation. This review aims at describing the literature on secondary metabolites that have been obtained from Scleractinian-associated organisms including bacteria, fungi, and zooxanthellae, with full coverage of the period from 1982 to 2020, as well as illustrating their biological activities and structure activity relationship (SAR). Moreover, all these compounds were filtered based on ADME analysis to determine their physicochemical properties, and 15 compounds were selected. The selected compounds were virtually investigated for potential inhibition for SARS-CoV-2 targets using molecular docking studies. Promising potential results against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and methyltransferase (nsp16) are presented. KW - Scleractinia KW - marine bacteria KW - marine fungi KW - zooxanthellae KW - marine natural products KW - ADME analysis KW - SARS-CoV-2 KW - molecular docking KW - RNA-dependent RNA polymerase KW - methyltransferase Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220041 SN - 1660-3397 VL - 18 IS - 12 ER - TY - JOUR A1 - Sarukhanyan, Edita A1 - Shityakov, Sergey A1 - Dandekar, Thomas T1 - Rational drug design of Axl tyrosine kinase type I inhibitors as promising candidates against cancer JF - Frontiers in Chemistry N2 - The high level of Axl tyrosine kinase expression in various cancer cell lines makes it an attractive target for the development of anti-cancer drugs. In this study, we carried out several sets of in silico screening for the ATP-competitive Axl kinase inhibitors based on different molecular docking protocols. The best drug-like candidates were identified, after parental structure modifications, by their highest affinity to the target protein. We found that our newly designed compound R5, a derivative of the R428 patented analog, is the most promising inhibitor of the Axl kinase according to the three molecular docking algorithms applied in the study. The molecular docking results are in agreement with the molecular dynamics simulations using the MM-PBSA/GBSA implicit solvation models, which confirm the high affinity of R5 toward the protein receptor. Additionally, the selectivity test against other kinases also reveals a high affinity of R5 toward ABL1 and Tyro3 kinases, emphasizing its promising potential for the treatment of malignant tumors. KW - Axl tyrosine kinase KW - anti-cancer drug-like molecules KW - rational drug design KW - molecular docking KW - molecular dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199505 SN - 2296-2646 VL - 7 IS - 920 ER - TY - JOUR A1 - Abdelhameed, Reda F. A. A1 - Eltamany, Enas E. A1 - Hal, Dina M. A1 - Ibrahim, Amany K. A1 - AboulMagd, Asmaa M. A1 - Al-Warhi, Tarfah A1 - Youssif, Khayrya A. A1 - Abd El-kader, Adel M. A1 - Hassanean, Hashim A. A1 - Fayez, Shaimaa A1 - Bringmann, Gerhard A1 - Ahmed, Safwat A. A1 - Abdelmohsen, Usama Ramadan T1 - New cytotoxic cerebrosides from the Red Sea cucumber Holothuria spinifera supported by in-silico studies JF - Marine Drugs N2 - Bioactivity-guided fractionation of a methanolic extract of the Red Sea cucumber Holothuria spinifera and LC-HRESIMS-assisted dereplication resulted in the isolation of four compounds, three new cerebrosides, spiniferosides A (1), B (2), and C (3), and cholesterol sulfate (4). The chemical structures of the isolated compounds were established on the basis of their 1D NMR and HRMS spectral data. Metabolic profiling of the H. spinifera extract indicated the presence of diverse secondary metabolites, mostly hydroxy fatty acids, diterpenes, triterpenes, and cerebrosides. The isolated compounds were tested for their in vitro cytotoxicities against the breast adenocarcinoma MCF-7 cell line. Compounds 1, 2, 3, and 4 displayed promising cytotoxic activities against MCF-7 cells, with IC\(_{50}\) values of 13.83, 8.13, 8.27, and 35.56 µM, respectively, compared to that of the standard drug doxorubicin (IC\(_{50}\) 8.64 µM). Additionally, docking studies were performed for compounds 1, 2, 3, and 4 to elucidate their binding interactions with the active site of the SET protein, an inhibitor of protein phosphatase 2A (PP2A), which could explain their cytotoxic activity. This study highlights the important role of these metabolites in the defense mechanism of the sea cucumber against fouling organisms and the potential uses of these active molecules in the design of new anticancer agents. KW - LC-HRESIMS KW - Holothuria spinifera KW - cerebrosides KW - molecular docking KW - cytotoxicity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211089 SN - 1660-3397 VL - 18 IS - 8 ER - TY - JOUR A1 - Sarukhanyan, Edita A1 - Shityakov, Sergey A1 - Dandekar, Thomas T1 - In silico designed Axl receptor blocking drug candidates against Zika virus infection JF - ACS Omega N2 - After a large outbreak in Brazil, novel drugs against Zika virus became extremely necessary. Evaluation of virus-based pharmacological strategies concerning essential host factors brought us to the idea that targeting the Axl receptor by blocking its dimerization function could be critical for virus entry. Starting from experimentally validated compounds, such as RU-301, RU-302, warfarin, and R428, we identified a novel compound 2′ (R428 derivative) to be the most potent for this task amongst a number of alternative compounds and leads. The improved affinity of compound 2′ was confirmed by molecular docking as well as molecular dynamics simulation techniques using implicit solvation models. The current study summarizes a new possibility for inhibition of the Axl function as a potential target for future antiviral therapies. KW - free energy KW - molecular docking KW - molecular dynamics KW - simulation KW - pharmacology KW - proteins KW - structure-activity relationship KW - viruses KW - Zika virus Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176739 VL - 3 IS - 5 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Puskás, István A1 - Pápai, Katalin A1 - Salvador, Ellaine A1 - Roewer, Norbert A1 - Förster, Carola A1 - Broscheit, Jens-Albert T1 - Sevoflurane-sulfobutylether-\(\beta\)-cyclodextrin complex: preparation, characterization, cellular toxicity, molecular modeling and blood-brain barrier transport studies JF - Molecules N2 - The objective of the present investigation was to study the ability of sulfobutylether-\(\beta\)-cyclodextrin (SBECD) to form an inclusion complex with sevoflurane (SEV), a volatile anesthetic with poor water solubility. The inclusion complex was prepared, characterized and its cellular toxicity and blood-brain barrier (BBB) permeation potential of the formulated SEV have also been examined for the purpose of controlled drug delivery. The SEV-SBE\(\beta\)CD complex was nontoxic to the primary brain microvascular endothelial (pEND) cells at a clinically relevant concentration of sevoflurane. The inclusion complex exhibited significantly higher BBB permeation profiles as compared with the reference substance (propranolol) concerning calculated apparent permeability values (P\(_{app}\)). In addition, SEV binding affinity to SBE\(\beta\)CD was confirmed by a minimal Gibbs free energy of binding (ΔG\(_{bind}\)) value of -1.727 ± 0.042 kcal・mol\(^{-1}\) and an average binding constant (K\(_{b}\)) of 53.66 ± 9.24 mM indicating rapid drug liberation from the cyclodextrin amphiphilic cavity. KW - pharmaceutical applications KW - in vitro KW - propranolol KW - water KW - primary microvascular endothelial cells KW - molecular liphophilicity potential KW - molecular docking KW - blood-brain barrier KW - ulfobutylether-\(\beta\)-cyclodextrin KW - sevoflurane KW - cyclodextrin formulations KW - safety KW - etomidate KW - formulations KW - hydrochloride KW - ether KW - intestinal absorption Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148543 VL - 20 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Sohajda, Tamás A1 - Puskas, Istaván A1 - Roewer, Norbert A1 - Förster, Carola A1 - Broscheit, Jens-Albert T1 - Ionization States, Cellular Toxicity and Molecular Modeling Studies of Midazolam Complexed with Trimethyl-β-Cyclodextrin JF - Molecules N2 - We investigated the ionization profiles for open-ring (OR) and closed-ring (CR) forms of midazolam and drug-binding modes with heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (trimethyl-β-cyclodextrin; TRIMEB) using molecular modeling techniques and quantum mechanics methods. The results indicated that the total net charges for different molecular forms of midazolam tend to be cationic for OR and neutral for CR at physiological pH levels. The thermodynamic calculations demonstrated that CR is less water-soluble than OR, mainly due to the maximal solvation energy (ΔG(CR)(solv = -9.98 kcal·mol ⁻¹), which has a minimal ΔG(OR)(solv) of -67.01 kcal·mol⁻¹. A cell viability assay did not detect any signs of TRIMEB and OR/CR-TRIMEB complex toxicity on the cEND cells after 24 h of incubation in either Dulbecco's Modified Eagles Medium or in heat-inactivated human serum. The molecular docking studies identified the more flexible OR form of midazolam as being a better binder to TRIMEB with the fluorophenyl ring introduced inside the amphiphilic cavity of the host molecule. The OR binding affinity was confirmed by a minimal Gibbs free energy of binding (ΔG(bind)) value of -5.57 ± 0.02 kcal·mol⁻¹, an equilibrium binding constant (K(b)) of 79.89 ± 2.706 μM, and a ligand efficiency index (LE(lig)) of -0.21 ± 0.001. Our current data suggest that in order to improve the clinical applications of midazolam via its complexation with trimethyl-β-cyclodextrin to increase drug's overall aqueous solubility, it is important to concern the different forms and ionization states of this anesthetic. All mean values are indicated with their standard deviations. KW - quantum mechanics KW - free energy of solvation KW - torsional energy KW - trimethyl-β-cyclodextrin KW - midazolam KW - transition state KW - molecular docking KW - Gibbs free energy of binding Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119186 VL - 19 IS - 10 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Förster, Carola T1 - In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter JF - Advances and Applications in Bioinformatics and Chemistry N2 - The blood–brain barrier choline transporter (BBB-ChT) may have utility as a drug delivery vector to the central nervous system (CNS). We therefore initiated molecular docking studies with the AutoDock and AutoDock Vina (ADVina) algorithms to develop predictive models for compound screening and to identify structural features important for binding to this transporter. The binding energy predictions were highly correlated with r2=0.88, F=692.4, standard error of estimate =0.775, and P-value<0.0001 for selected BBB-ChT-active/inactive compounds (n=93). Both programs were able to cluster active (Gibbs free energy of binding <−6.0 kcal*mol-1) and inactive (Gibbs free energy of binding >−6.0 kcal*mol-1) molecules and dock them significantly better than at random with an area under the curve value of 0.86 and 0.84, respectively. In ranking smaller molecules with few torsional bonds, a size-related bias in scoring producing false-negative outcomes was detected. Finally, important blood–brain barrier parameters, such as the logBBpassive and logBBactive values, were assessed to predict compound transport to the CNS accurately. Knowledge gained from this study is useful to better understand the binding requirements in BBB-ChT, and until such time as its crystal structure becomes available, it may have significant utility in developing a highly predictive model for the rational design of drug-like compounds targeted to the brain. KW - virtual screening KW - Gibbs free energy of binding KW - diffusion KW - molecular docking KW - drug delivery vector KW - central nervous system KW - blood–brain barrier choline transporter Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120200 VL - 7 ER -