TY - THES A1 - Endres, Ralph Julian T1 - Networks of fear: Functional connectivity of the amygdala, the insula and the anterior cingulate cortex in two subtypes of specific phobia T1 - Netzwerke der Angst: Funktionelle Konnektivität der Amygdala, der Insula und des anterioren cingulären Cortex in zwei Subtypen der spezifischen Phobie N2 - Neuroimaging research has highlighted the relevance of well-balanced functional brain interactions as an essential basis for efficient emotion regulation. In contrast, abnormal coupling of fear-processing regions such as the amygdala, the anterior cingulate cortex (ACC) and the insula could be an important feature of anxiety disorders. Although activity alterations of these regions have been frequently reported in specific phobia, little is known about their functional interactions during phobogenic stimulus processing. To explore these interrelationships in two subtypes of specific phobia – i.e., the blood-injection-injury subtype and the animal subtype – functional connectivity (FC) was analyzed in three fMRI studies. Two studies examined fear processing in a dental phobia group (DP), a snake phobia group (SP) and a healthy control group (HC) during visual phobogenic stimuli presentation while a third study investigated differences between auditory and visual stimuli presentation in DP and HC. Due to a priori hypotheses of impaired interactions between the amygdala, the ACC and the insula, a first analysis was conducted to explore the FC within these three regions of interest. Based on emerging evidence of functionally diverse subregions, the ACC was further divided into a subgenual, pregenual and dorsal ACC and the insula was divided into a ventral-anterior, dorsal-anterior and posterior region. Additionally, an exploratory seed-to-voxel analysis using the amygdala, ACC and insula as seeds was conducted to scan for connectivity patterns across the whole brain. The analyses revealed a negative connectivity of the ACC and the amygdala during phobogenic stimulus processing in controls. This connectivity was predominantly driven by the affective ACC subdivision. By contrast, SP was characterized by an increased mean FC between the examined regions. Interestingly, this phenomenon was specific for auditory, but not visual symptom provocation in DP. During visual stimulus presentation, however, DP exhibited further FC alterations of the ACC and the insula with pre- and orbitofrontal regions. These findings mark the importance of balanced interactions between fear-processing regions in specific phobia, particularly of the inhibitory connectivity between the ACC and the amygdala. Theoretically, this is assumed to reflect top-down inhibition by the ACC during emotion regulation. The findings support the suggestion that SP particularly is characterized by excitatory, or missing inhibitory, (para-) limbic connectivity, reflecting an overshooting fear response based on evolutionary conserved autonomic bottom-up pathways. Some of these characteristics applied to DP as well but only under the auditory stimulation, pointing to stimulus dependency. DP was further marked by altered pre- and orbitofrontal coupling with the ACC and the insula which might represent disturbances of superordinate cognitive control on basal emotion processes. These observations strengthen the assumption that DP is predominantly based on evaluation-based fear responses. In conclusion, the connectivity patterns found may depict an intermediate phenotype that possibly confers risks for inappropriate phobic fear responses. The findings presented could also be of clinical interest. Particularly the ACC – amygdala circuit may be used as a predictive biomarker for treatment response or as a promising target for neuroscience-focused augmentation strategies as neurofeedback or repetitive transcranial magnetic stimulation. N2 - Neurowissenschaftliche Erkenntnisse der letzten Jahre verdeutlichten die Relevanz intakter neuronaler Netzwerke als Grundlage adäquater Emotionsregulationsmechanismen. Funktionelle Dysregulationen zwischen angstverarbeitenden Regionen wie der Amygdala, der Insula oder dem anterioren cingulären Cortex (ACC) könnten hingegen einen wichtigen pathophysiologischen Mechanismus von Angststörungen darstellen. Obwohl Aktivitätsunterschiede dieser Regionen wiederholt für spezifische Phobien beschrieben wurden, sind deren funktionelle Interaktionen während phobischer Stimulusverarbeitung kaum erforscht. Zur Untersuchung dieser Interaktionen in zwei Subtypen der spezifischen Phobie – dem Blut-Spritzen-Verletzungs-Typus und dem Tier-Typus – wurden im Rahmen dieser Arbeit funktionelle Konnektivitäts-Analysen (FK) anhand dreier fMRT- (funktionelle Magnetresonanztomographie) Studien durchgeführt. Zwei Studien untersuchten die neurale Verarbeitung visueller phobischer Stimuli in einer dentalphobischen Gruppe (DP), einer schlangenphobischen Gruppe (SP) sowie einer Kontrollgruppe (KG). Ergänzend verglich eine dritte Studie den Einfluss visueller und akustischer Stimuli für die DP und eine KG. Basierend auf der a priori-Hypothese einer veränderten FK zwischen der Amygdala, der Insula und dem ACC wurden deren spezifische Konnektivitätsmuster untersucht. Aufgrund funktionell unterschiedlicher Subregionen erfolgte eine Untergliederung des ACC in eine subgenuale, perigenuale und dorsalen Region. Analog dazu wurde die Insula in eine ventral-anteriore, dorsal-anteriore und posteriore Region unterteilt. Um darüberhinausgehender Konnektivitätsmuster über das gesamte Gehirn zu ermitteln, wurde eine abschließende Seed-to-Voxel-Analyse mit den Seeds Amygdala, Insula und ACC durchgeführt. In der Auswertung zeigte sich eine negative FK der Amygdala und des ACC während phobischer Stimulusverarbeitung in der KG, die insbesondere auf die ventrale Division des ACC zurückzuführen war. Die phobischen Gruppen hingegen waren im Vergleich zu der Kontrollgruppe durch eine erhöhte Konnektivität der untersuchten Regionen gekennzeichnet. Dieser Effekt war bei der DP spezifisch für die akustische Stimulusmodalität. Bei visueller Stimuluspräsentation zeigten sich hingegen veränderte Konnektivitätsmuster des ACC und der Insula mit prä- und orbitofrontalen Regionen. Insbesondere die negative FK der Amygdala und des ACC, die theoretisch auf einer top-down-Inhibition des ACC über die Amygdala basiert, erscheint einen wichtigen Bestandteil einer effektiven emotionalen Kontrolle darzustellen. In beiden phobischen Gruppen fehlte diese Inhibition. Die erhöhte FK (para-)limbischer Konnektivität der SP könnte hingegen die verstärkte Rekrutierung autonomischer bottom-up-Prozesse als zugrundeliegendem Mechanismus der überschießenden und irrationalen Angstreaktion repräsentieren. Diese Charakteristika konnten in der DP nur für die akustische Stimulusmodalität beobachtet werden. Während der visuellen Stimuluspräsentation war die DP durch Dysregulationen prä- und orbitofrontaler Regionen gekennzeichnet, welche eine beeinträchtigte kognitive Kontrolle über grundlegende Emotionsprozesse widerspiegeln könnte. Dies entspricht der Annahme, dass die DP vor allem durch evaluationsbasierte Furchtreaktionen gekennzeichnet ist, während in der SP als Vertreter des Tier-Typus evolutionär konservierte, limbische Prozesse dominieren. Zusammenfassend bestätigen die Ergebnisse die Bedeutung funktioneller Netzwerke in der spezifischen Phobie, wobei die gefundenen Konnektivitätsmuster einen intermediären Phänotyp darstellen könnten, der möglicherweise das Risiko für das Auftreten dysfunktionaler phobischer Angstreaktionen vermittelt. Von klinischem Interesse ist vor allem die Amygdala – ACC-Vernetzung, die als prädiktiver Biomarker für das Therapieansprechen genutzt oder im Rahmen neuromodulatorischer Therapieansätze wie dem Neurofeedback oder der repetitiven transkraniellen Magnetstimulation gezielt angesteuert werden könnte. KW - Kernspintomografie KW - Psychiatrie KW - Phobie KW - fMRT KW - Funktionelle Konnektivität KW - Spezifische Phobien KW - fMRI KW - Functional Connectivity KW - Specific Phobia KW - Neuroimaging KW - Dental Phobia KW - Zahnbehandlungsphobie KW - Angstverarbeitung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180950 ER - TY - THES A1 - Mendes Pereira, Lenon T1 - Morphological and Functional Ultrashort Echo Time (UTE) Magnetic Resonance Imaging of the Human Lung T1 - Morphologische und funktionelle Magnetresonanztomographie der menschlichen Lunge mit ultrakurzen Echozeiten (UTE) N2 - In this thesis, a 3D Ultrashort echo time (3D-UTE) sequence was introduced in the Self-gated Non-Contrast-Enhanced Functional Lung Imaging (SENCEFUL) framework. The sequence was developed and implemented on a 3 Tesla MR scanner. The 3D-UTE technique consisted of a nonselective RF pulse followed by a koosh ball quasi-random sampling order of the k-space. Measurements in free-breathing and without contrast agent were performed in healthy subjects and a patient with lung cancer. A gating technique, using a combination of different coils with high signal correlation, was evaluated in-vivo and compared with a manual approach of coil selection. The gating signal offered an estimation of the breathing motion during measurement and was used as a reference to segment the acquired data into different breathing phases. Gradient delays and trajectory errors were corrected during post-processing using the Gradient Impulse Response Function. Iterative SENSE was then applied to determine the fully sampled data. In order to eliminate signal changes caused by motion, a 3D image registration was employed, and the results were compared to a 2D image registration method. Ventilation was assessed in 3D and regionally quantified by monitoring the signal changes in the lung parenchyma. Finally, image quality and quantitative ventilation values were compared to the standard 2D-SENCEFUL technique. 3D-UTE, combined with an automatic gating technique and SENCEFUL MRI, offered ventilation maps with high spatial resolution and SNR. Compared to the 2D method, UTE-SENCEFUL greatly improved the clinical quality of the structural images and the visualization of the lung parenchyma. Through‐plane motion, partial volume effects and ventilation artifacts were also reduced with a three-dimensional method for image registration. UTE-SENCEFUL was also able to quantify regional ventilation and presented similar results to previous studies. N2 - In dieser Arbeit wurde eine 3D-UTE (ultrashort echo time) Sequenz mit SENCEFUL-MRI kombiniert. Die Sequenz wurde für einen 3 T MR-Scanner entwickelt und implementiert. Die 3D-UTE-Technik bestand aus einem nichtselektiven HF- Impuls, gefolgt von einer quasi-zufälligen Abtastung des k-Raums. Messungen in freier Atmung und ohne Kontrastmittel wurden bei gesunden Probanden und einem Patienten mit Lungenkrebs durchgeführt. Zur Zuordnung der Daten zu verschiedene Atemphasen wurde eine Technik verwendet, die verschiedene Spulen mit hoher Signalkorrelation kombiniert. Die Ergebnisse wurden in einer in-vivo Messung bewertet und mit einem manuellen Ansatz der Spulenselektion verglichen. Die Technik ermöglichte eine Visualisierung der Atembewegung und wurde als Referenz verwendet, um die erfassten Daten in mehrere Atemphasen zu segmentieren. Gradientenverzögerungen und Trajektorienfehler wurden mit der "Gradient Impulse Response Function - GIRF" korrigiert. Bei der Bildrekonstruktion kam Iteratives SENSE zum Einsatz. Eine 3D-Bildregistrierung erlaubte es, Signaländerungen durch Bewegung zu eliminieren. Es erfolgte ein Vergleich der Ergebnisse mit einem 2D- Bildregistrierungsverfahren. Die Lungenventilation wurde in 3D gemessen und anhand der Signaländerungen im Lungenparenchym quantifiziert. Schließlich, wurden die Werte für die Bildqualität und Lungenventilation mit der Standard-2D-SENCEFUL-Technik verglichen. Die 3D-UTE-Sequenz in Kombination mit einer automatischen Gating-Technik und SENCEFUL-MRI, ermöglichte die Akquise von Ventilationskarten mit hoher räumlicher Auflösung und SNR. Im Vergleich zur 2D-Methode, verbesserte UTE- SENCEFUL die klinische Qualität der Morphologischen Bilder. Bewegung, Partialvolumeneffekte und Ventilationsartefakte wurden ebenfalls mit einer dreidimensionalen Methode zur Bildregistrierung reduziert. Insgesamt konnten mit der 3D-UTE Technik die Ergebnisse vorangegangener Studien reproduziert und die Bildqualität verbessert werden. KW - Kernspintomografie KW - Lunge KW - MRI KW - Ultrashort echo time - UTE KW - Magnetic Resonance Imaging KW - Lung Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-183176 ER -